Transforming Carbon Dioxide

Carbon dioxideCarbon dioxide accounts for over 80 percent of all greenhouse gas emissions. For many, carbon dioxide emissions are a significant environmental issues, but for researchers like Haotian Wang of Harvard University, carbon dioxide could be the perfect raw material.

According to a new study, Wang and his team are well on the way to developing a system that uses renewable electricity to electrochemically transform carbon dioxide into carbon monoxide. The carbon monoxide could then be used in a host of industrial processes, such as plastics production, creating hydrocarbon products, or as a fuel itself.

This from Harvard University:

The energy conversion efficiency from sunlight to CO can be as high as 12.7%, more than one order of magnitude higher than natural photosynthesis.

(more…)

GridResearchers from Lappeenranta University of Technology (LUT) and VTT Technical Research Centre of Finland have successfully created food out of electricity and carbon dioxide, which they hope could one day be used to help solve world hunger.

According to reports, the single-cell protein can be produced wherever renewable energy is available, with uses ranging from food to animal feed.

“In practice, all the raw materials are available from the air. In the future, the technology can be transported to, for instance, deserts and other areas facing famine,” co-author of the research, Juha-Pekka Pitkanen, said in a statement. “One possible alternative is a home reactor, a type of domestic appliance that the consumer can use to produce the needed protein.”

The researchers achieved this result by exposing those raw materials and putting them in a small “protein reactor.” After exposing it to electrolysis, chemical decomposition occurs. After about two weeks, one gram of powder made of 50 percent protein and 25 percent carbohydrate.

(more…)

Carbon dioxideThe global development of industry, technology, and the transportation sector has resulted in massive consumption of fossil fuels. As these fuels are burned, emissions are released—namely carbon dioxide. According to the U.S. Environmental Protection Agency, combustion of petroleum-based products resulted in 6,587 million metric tons of carbon dioxide released into the environment in 2015. But what if we could capture the greenhouse gas and not only convert it, but potentially make a huge profit?

That’s exactly what ECS member Stuart Licht is looking to do.

In a new study, Licht and his team demonstrate using carbon dioxide and solar thermal energy to produce high yields of millimeter-lengths carbon nanotube (CNT) wool at a cost of $660 per ton. According to marketplace values, these CNTs, which have applications ranging from textiles to cement, could then be sold for up to $400,000 per ton.

“We have introduced a new class of materials called ‘Carbon Nanotube Wool,’ which are the first CNTs that can be directly woven into a cloth, as they are of macroscopic length and are cheap to produce,” Licht, a chemistry professor at George Washington University, tells Phys.org. “The sole reactant to produce the CNT wools is the greenhouse gas carbon dioxide.”

(more…)

Carbon dioxideA new study describes the mechanics behind an early key step in artificially activating carbon dioxide so that it can rearrange itself to become the liquid fuel ethanol.

Solving this chemical puzzle may one day lead to cleaner air and renewable fuel.

The scientists’ ultimate goal is to convert harmful carbon dioxide (CO2) in the atmosphere into beneficial liquid fuel. Currently, it is possible to make fuels out of CO2—plants do it all the time—but researchers are still trying to crack the problem of artificially producing the fuels at large enough scales to be useful.

Theorists at Caltech used quantum mechanics to predict what was happening at atomic scales, while experimentalists at the Department of Energy’s (DOE) Lawrence Berkeley National Lab (Berkeley Lab) used X-ray studies to analyze the steps of the chemical reaction.

“One of our tasks is to determine the exact sequence of steps for breaking apart water and CO2 into atoms and piecing them back together to form ethanol and oxygen,” says William Goddard professor of chemistry, materials science, and applied physics, who led the Caltech team. “With these new studies, we have better ideas about how to do that.”

(more…)

Renewable liquid fuelA team of researchers from Texas A&M University is looking to take the negative impact of excessive levels of carbon dioxide in the atmosphere and turn it into a positive with renewable hydrocarbon fuels.

Greenhouse gasses trap heat in the atmosphere and therefore impact global temperatures, making the planet warmer. Carbon dioxide, the most common greenhouse gas, is emitted into the atmosphere upon burning fossil fuels, solid waste, and wood products, and makes up 81 percent of all greenhouse gas emissions in the U.S.

“We’re essentially trying to convert CO2 and water, with the use of the sun, into solar fuels in a process called artificial photosynthesis,” says Ying Li, principal investigator and ECS member. “In this process, the photo-catalyst material has some unique properties and acts as a semiconductor, absorbing the sunlight which excites the electrons in the semiconductor and gives them the electric potential to reduce water and CO2 into carbon monoxide and hydrogen, which together can be converted to liquid hydrocarbon fuels.”

This from Texas A&M University:

The first step of the process involves capturing CO2 from emissions sources such as power plants that contribute to one-third of the global carbon emissions. As of yet, there is no technology capable of capturing the CO2, and at the same time re-converting it back into a fuel source that isn’t expensive. The material, which is a hybrid of titanium oxide and magnesium oxide, uses the magnesium oxide to absorb the CO2 and the titanium oxide to act as the photo-catalyst, generating electrons through sunlight that interact with the absorbed CO2 and water to generate the fuel.

(more…)

Carbon dioxideGlobally, carbon dioxide in the number one contributor to harmful greenhouse gas emissions. These emissions have been linked to the acceleration of climate change, leading to such devastating effects as rising sea levels that displace communities and radical local climates that hurt agriculture.

But what is you could turn that CO2 into baking powder?

That’s what one company in India is setting out to do. A chemical plant in the city of Tuticorin is teaming up with India’s Carbon Clean Solutions to save 60,000 tons of last year’s CO2 emissions.

“I am a businessman. I never thought about saving the planet,” says Ramachadran Gopalan, owner of the plant that is capturing CO2 from coal-powered boilers, to BBC Radio 4. “I needed a reliable stream of CO2, and this was the best way of getting it.”

While Gopalan may not have thought about saving planet, the team at Carbon Clean Solutions has.

(more…)

By: Pep Canadell, CSIRO; Corinne Le Quéré, University of East Anglia; Glen Peters, Center for International Climate and Environment Research – Oslo, and Rob Jackson, Stanford University

Carbon dioxideFor the third year in a row, global carbon dioxide emissions from fossil fuels and industry have barely grown, while the global economy has continued to grow strongly. This level of decoupling of carbon emissions from global economic growth is unprecedented.

Global CO₂ emissions from the combustion of fossil fuels and industry (including cement production) were 36.3 billion tonnes in 2015, the same as in 2014, and are projected to rise by only 0.2% in 2016 to reach 36.4 billion tonnes. This is a remarkable departure from emissions growth rates of 2.3% for the previous decade, and more than 3% during the 2000s.

Given this good news, we have an extraordinary opportunity to extend the changes that have driven the slowdown and spark the great decline in emissions needed to stabilise the world’s climate.

This result is part of the annual carbon assessment released today by the Global Carbon Project, a global consortium of scientists and think tanks under the umbrella of Future Earth and sponsored by institutions from around the world.

(more…)

Carbon dioxide emissions account for 80 percent of all greenhouse gases pumped into the environment, totaling in at a staggering 40 tons of CO2 currently emitted from burning fossil fuels. In a response to the high levels of CO2, which have been linked to the accelerating rates in climate change, the U.S. Environmental Protection Agency has called for a 30 percent decrease in emissions of the power sector. Former ECS member Susan Rempe is looking to help the sector achieve that goal through the development of the CO2 Memzyme.

Researchers claim the Memzyme is the only cost-effective way to capture and process CO2. Further, the team states that the Memzyme — which is a membrane with an active layer holding an enzyme — has prefect selectivity.

The development could help capture CO2 from coal-fired power plants and is 10 times thinner than a soap bubble.

Carbon Dioxide

Image: CC0

With atmospheric greenhouse gas levels at their highest in history, many researchers have been contemplating one question: How can we reutilize carbon dioxide?

One new study reports a new catalyst with the ability to execute highly selective conversion of carbon dioxide into ethylene, producing an important source material for the chemical industry.

The push to convert carbon dioxide into useful chemicals is not a completely novel concept among the scientific community. For this study, researchers opted to make the process more efficient by implementing a new catalyst with higher selectivity to produce more useful chemicals and less unwanted byproducts.

Ruhr-Universitӓt Bochum PhD student and ECS student member, Hemma Mistry, veered away from the traditional catalyst used in this process and instead opted for copper films treated with oxygen or hydrogen plasmas. By doing this, Mistry was able to alter surface properties for optimal performance.

(MORE: Read Mistry’s past ECS Meeting Abstract entitled, “Selectivity Control in the Electroreduction of CO2 over Nanostructured Catalysts.”)

(more…)

Reutilizing carbon dioxide to produce clean burning fuels

Carbon dioxide

David Go has always seen himself as something of a black sheep when it comes to his scientific research approach, and his recent work in developing clean alternative fuels from carbon dioxide is no exception.

In 2015, Go and his research team at the University of Notre Dame were awarded a $50,000 grant to purse innovative electrochemical research in green energy technology through the ECS Toyota Young Investigator Fellowship. With a goal of aiding scientists in advancing alternative energies, the fellowship aims to empower young researchers in creating next-generation vehicles capable of utilizing alternative fuels that can lead to climate change action in transportation.

The road less traveled

While advancing research in electric vehicles and fuel cells tend to be the top research areas in sustainable transportation, Go and his team is opting to go down the road less traveled through a new approach to green chemistry: plasma electrochemistry.

(MORE: Read Go’s Meeting Abstract on this topic, entitled “Electrochemical Reduction of CO2(aq) By Solvated Electrons at a Plasma-Liquid Interface.”)

“Our approach to electrochemistry is completely a-typical,” Go, associate professor at the University of Notre Dame, says. “We use a technique called plasma electrochemistry with the aim of processing carbon dioxide – a pollutant – back into more useful products, such as clean-burning fuels.”

(more…)

  • Page 1 of 3