The "designer carbon" improved the supercapacitor's electrical conductivity threefold compared to electrodes made of conventional activated carbon.Image: Stanford University

The “designer carbon” improved the supercapacitor’s electrical conductivity threefold compared to electrodes made of conventional activated carbon.
Image: Stanford University

Stanford University researchers have developed a new “designer carbon” that can be fine-tuned for a variety of applications, including energy storage and water filters.

The newly developed carbon material has shown that it can significantly improve the power delivery rate of supercapacitors and boost the performance of energy storage technologies.

“We have developed a ‘designer carbon’ that is both versatile and controllable,” said Zhenan Bao, past member of ECS and the senior author of the study. “Our study shows that this material has exceptional energy-storage capacity, enabling unprecedented performance in lithium-sulfur batteries and supercapacitors.”

(PS: Check out some of Bao’s past papers in the Digital Library!)

Not only is the new carbon an improvement over existing versions, it also has a huge potential scope and is inexpensive to produce.

(more…)

What Is Penta-Graphene?

The newly discovered material, called penta-graphene, is a single layer of carbon pentagons that resembles the Cairo tiling, and that appears to be dynamically, thermally and mechanically stable.Image: VCU

The newly discovered material, called penta-graphene, is a single layer of carbon pentagons that resembles the Cairo tiling, and that appears to be dynamically, thermally and mechanically stable.
Image: VCU

Researchers from Virginia Commonwealth University (VCU) in conjunction with universities in China and Japan have discovered a new structural variant of carbon that they are coining “penta-graphene.”

The new material is comprised of a very thin sheet of pure carbon that is especially unique due to its exclusively pentagonal pattern. Thus far, the penta-graphene appears to be dynamically, thermally and mechanically stable.

“The three last important forms of carbon that have been discovered were fullerene, the nanotube and graphene. Each one of them has unique structure. Penta-graphene will belong in that category,” said the paper’s senior author and distinguished professor in the Department of Physics at VCU, Puru Jena in a press release.

The inspiration for this new development came from the pattern of the tiles found paving the streets of Cairo. Professor at Peking University and adjunct professor at VCU, Qian Wang, got the inspiration that inevitably led to penta-graphene while dining in Beijing.

(more…)

How Are Nanomotors Being Built? (Video)

Carbon nanotubes are exceptionally strong, but when you roll two that fit together, the engineers believe they’ve got a nanomotor.Image: Nature

Carbon nanotubes are exceptionally strong, but when you roll two that fit together, the engineers believe they’ve got a nanomotor.
Image: Nature

Ray Kurzweil – an author, computer scientists, inventor, futurist, and director of engineering at Google – has once been quoted saying, “In 25 years, a computer that’s the size fo your phone will be millions of times more powerful but will be the size of a blood cell.”

That prediction may be on its way to fruition with this new discovery from engineers in China and Australia.

The engineers have developed a double-walled carbon nanotube motor, which could be a huge player in future nanotechnology devices.

(more…)

Chemical Sponge to Lessen Carbon Footprint

A new chemical sponge out of the University of Nottingham has the potential to lessen the carbon footprint of the oil industry.

Professor Martin Schröder and Dr. Sihai Yang of the University of Nottingham led a multi-disciplinary team from various institutions, which resulted in the discovery of this novel chemical sponge that separates a number of important gases from mixtures generated during crude oil refinement.

Crude oil has many uses – from fueling cars and heating homes to creating polymers and other useful materials. However, the existing process for producing this fuel has not been as efficient as it could possibly be.

(more…)

Scientists from Tohoku University in Japan have developed a new type of energy-efficient flat light source based on carbon nanotubes with very low power consumptions of around 0.1 Watt for every hour's operation -- about a hundred times lower than that of an LED.Credit: N. Shimoi/Tohoku University

Scientists have developed a new type of energy-efficient flat light source with a power consumption about a hundred times lower than that of an LED.
Credit: N. Shimoi/Tohoku University

Scientists all around the globe are constantly looking for a way to create the even-better-bulb of tomorrow. In order to do this, researchers are looking toward carbon electronics.

This from the American Institute of Physics:

Electronics based on carbon, especially carbon nanotubes (CNTs), are emerging as successors to silicon for making semiconductor materials, and they may enable a new generation of brighter, low-power, low-cost lighting devices that could challenge the dominance of light-emitting diodes (LEDs) in the future and help meet society’s ever-escalating demand for greener bulbs.

Read the full article here.

With this in mind, scientists from Tohoku University have developed a new type of energy-efficient flat light source with a very low power consumption that comes in around 0.1 Watt for every hour of operation. This is about one hundred times lower than that of an LED.

(more…)

The core of the nanothreads is a long, thin strand of carbon atoms arranged just like the fundamental unit of a diamond's structure.Credit: John Badding Lab, Penn State University

The core of the nanothreads is a long, thin strand of carbon atoms arranged just like the fundamental unit of a diamond’s structure.
Credit: John Badding Lab, Penn State University

A team of scientists have recently discovered how to produce ultra-thin “diamond nanothreads.” These nanothreads, which construct a structure more than 20,000 times smaller than average human hair, are expected to yield extraordinary properties. The new nanothreads will be stronger and stiffer than current nanotubes, and they will also be light in weight.

This means creating the potential for more fuel efficient vehicles, and even fictional-sounding endeavors – such as a “space elevator.”

This from Carnegie Science:

The team—led by John Badding, a chemistry professor at Penn State University and his student Thomas Fitzgibbons—used a specialized large volume high pressure device to compress benzene up to 200,000 atmospheres, at these enormous pressures, benzene spontaneously polymerizes into a long, thin strands of carbon atoms arranged just like the fundamental unit of diamond’s structure—hexagonal rings of carbon atoms bonded together, but in chains rather than the full three-dimensional diamond lattice.

(more…)

  • Page 2 of 2
    • 1
    • 2