By: Mark Barteau, University of Michigan

OilPresident…Donald…Trump. For those on both sides of the aisle who vowed “Never Trump!,” that’s going to take some getting used to. On this morning after a stunning election, the first impulse may be to describe the future in apocalyptic phrases. Game over for the climate! Game over for NATO! Game over for the Clean Power Plan! Game over for Planned Parenthood!

While there are certainly extreme outcomes possible for these and many other issues that divide our nation, we may see some moderation, especially on matters where the divisions do not rigidly follow ideological fault lines.

Of course, the president-elect himself is famous neither for hewing to right wing orthodoxy nor for consistency between his various pronouncements. As he has said: “I like to be unpredictable.”

But make no mistake, in the energy and climate space Trump’s number one priority is to dismantle the Obama legacy as he sees it. And he sees it largely through the lens of organizations like the U.S. Chamber of Commerce and the American Petroleum Institute, pro-fossil fuel organizations severely allergic to regulations.

A prime target is the Environmental Protection Agency and its regulation of greenhouse gases via the Clean Power Plan and methane emissions measures, which are described as “job killers.”

Fossil fuel revolution

The Clean Power Plan, which sets limits on carbon emissions from power plants, has been stayed by the courts for the moment, but one should not forget that EPA’s responsibility to regulate CO2 emissions under the Clean Air Act was affirmed by the Supreme Court. This sets up a potential conflict among the executive, legislative and judicial branches.

President Trump and a Republican-controlled Congress may hollow out and handcuff the EPA, but EPA’s responsibility to regulate greenhouse gases will remain unless existing law is modified by Congress or by a Court returned to full strength with Trump appointees.

(more…)

The National Park Service, which oversees more than 400 sites across the country, celebrated its 100th birthday on Aug. 25, 2016. During the centennial anniversary, Popular Science caught up with Bill Nye to discuss how climate change is affecting these public lands and their inhabitants.


Bill Nye On Climate Change In Our National Parks by PopSci
Learn more about what our scientists are doing to provide answers to growing global energy needs with clean, alternative solutions.

When it comes to understanding the factors behind climate change, many scientists point to greenhouse gases – the main contributor being carbon dioxide. From upcycling the greenhouse gas to transforming CO2 into clean burning fuels, electrochemists and solid state scientists are tackling some of the most pressing issues in global warming.

But some researchers are now shifting that spotlight to black carbon (or soot) – the runner-up in factors causing the plant to warm, and one that is often overlooked.

Black carbon is typically created from the running of diesel engines, coal-burning plants, and open biomass incineration. It has been known from its negative impact on health, but it also absorbs light and mixes with water taken from clouds, creating devastating effects.

This from Popular Science:

Eliminating black carbon could stop about 40 percent of global warming. It’s not hard to “scrub” emissions at their source. And because soot only stays in the air for weeks, there would be a near-immediate decrease in the planet’s heating, buying us more time to replace fossil fuels with clean energy. But doing so would trigger a second type of climate change. When black carbon reaches the atmosphere, it’s already mixed with sulfur dioxide and other organic matter. Those particles actually reflect sunlight, causing a “global cooling” effect by preventing that solar radiation from penetrating the lower levels of the atmosphere.

Read the full article.

Researchers are looking to combat this catch 22 by isolating and filtering black carbon.

Does this summer feel a little warmer than usual? Well, that’s because it is.

According to NASA, the first six months of 2016 have been the warmest half-year ever recorded. Pair that with the smallest monthly Artic Sea ice extent in that same period of time, and these two indicators give a grim image of the accelerating pace of climate change.

In a report, NASA states that the global temperature has increased by 2.4°F since record keeping began in the 1800s. Additionally, Artic Sea ice has been declining at a rate of 13.4 percent per decade.

“It has been a record year so far for global temperatures, but the record high temperatures in the Arctic over the past six months have been even more extreme,” says Walt Mkeier, a sea ice researcher with NASA. “This warmth as well as unusual weather patterns have led to the record low sea ice extents so far this year.”

If climate continues down this same path, the effects could be devastating for the world. However, electrochemical and solid state science may have some of the answers to mitigate climate change.

(more…)

Reutilizing carbon dioxide to produce clean burning fuels

Carbon dioxide

David Go has always seen himself as something of a black sheep when it comes to his scientific research approach, and his recent work in developing clean alternative fuels from carbon dioxide is no exception.

In 2015, Go and his research team at the University of Notre Dame were awarded a $50,000 grant to purse innovative electrochemical research in green energy technology through the ECS Toyota Young Investigator Fellowship. With a goal of aiding scientists in advancing alternative energies, the fellowship aims to empower young researchers in creating next-generation vehicles capable of utilizing alternative fuels that can lead to climate change action in transportation.

The road less traveled

While advancing research in electric vehicles and fuel cells tend to be the top research areas in sustainable transportation, Go and his team is opting to go down the road less traveled through a new approach to green chemistry: plasma electrochemistry.

(MORE: Read Go’s Meeting Abstract on this topic, entitled “Electrochemical Reduction of CO2(aq) By Solvated Electrons at a Plasma-Liquid Interface.”)

“Our approach to electrochemistry is completely a-typical,” Go, associate professor at the University of Notre Dame, says. “We use a technique called plasma electrochemistry with the aim of processing carbon dioxide – a pollutant – back into more useful products, such as clean-burning fuels.”

(more…)

A team of researchers from Iceland is looking to fight climate change by turning greenhouse gases into rocks.

A recent paper published in Science details how researchers have been able to capture carbon emissions and lock them in the ground, transforming them from harmful atmospheric greenhouse gases to volcanic rock.

“Our results show that between 95 and 98 percent of the injected carbon dioxide was mineralized over the period of less than two years, which is amazingly fast,” said lead author Juerg Matter.

A large majority of all electricity in Iceland come from geothermal energy. While geothermal may seem like a very clean source of energy, it is not carbon dioxide independent.

In fact, the geothermal energy of Iceland produces 40,000 pounds of carbon dioxide every year. That is only about five percent of what a fossil fuel plant of the same size would emit, but research team is looking to work toward a completely carbon dioxide independent economy.

An infographic that can visually tell the story of climate changes has been making its rounds on the internet.

Brainchild of climate scientists Ed Hawkins and Jan Fuglestvedt, the animation shows how global temperatures have spiraled upwards and outwards since 1850.

The magic number here is 2°C. Once the global temperature hits 2°C above the average temperature between 1850 and 1900, many scientists believe that at least some aspects of climate change will be irreversible.

(more…)

Old People and Climate Change

We talk about climate change a lot here at ECS, but the realities of rising sea levels and record-breaking carbon emissions in the atmosphere makes for pretty grim material. In an effort to drum up support for environmental protection, Defend Our Future teamed up with Funny or Die to give the climate change discussion a little comic relief.

Funny or Die

Cloris Leachman, Michael Lerner, and a few other funny people discuss how seniors view climate change – or as they describe it, the “after I’m dead problem.”

After all the laughs, Defend our Future has one simple message: old people don’t care about climate change, that’s why you have to.

MITThe Massachusetts Institute of Technology (MIT) Climate CoLab is currently running a series of contests where people all over the world can work with experts and each other to develop climate change solutions.

The waste management contest is now open. We are seeking practical proposals to reduce greenhouse gas emissions from waste and waste management that can be rapidly implemented, scaled-up and/or replicated. We especially encourage proposals that address national (e.g. Intended Nationally Determined Contributions or National Adaptation Plans) and/or sub-national strategies to address the challenges of climate change and aim to help countries, states, and communities implement those strategies.

The Judges’ and Popular Choice Winners will be invited to MIT to present their proposal, enter the Climate CoLab Winners Program and be eligible for the $10,000 Grand Prize. All award winners will receive wide recognition and visibility by the MIT Climate CoLab. See last year’s conference. Entries are due May 23, 2016. Early submissions welcome — entries can be edited until the contest deadline.

Even if you don’t have new ideas yourself, you can help improve other people’s ideas and support the ones you find most promising. Visit the CoLab to learn more.

Upcycling has become a huge trend in recent years. People are reusing and repurposing items that most wouldn’t give a second glance, transforming them into completely new, high-quality products. So what if we could take that same concept and apply it to the greenhouse gas emissions in the environment that are accelerating climate change?

An interdisciplinary team from UCLA is taking a shot at upcycling carbon dioxide by converting it into a new building material named CO2NCRETE, which could be fabricated by 3D printers.

“What this technology does is take something that we have viewed as a nuisance – carbon dioxide that’s emitted from smokestacks – and turn it into something valuable,” says J.R. DeShazo, senior member of the research team.

The fact that the team is attempting to produce a concrete-like material is also important. Currently, the extraction and preparation of building materials like concrete is responsible for 5 percent of the world’s greenhouse gas emissions. The upcycling of carbon could cut that number drastically all while reducing the enormous emissions being released from power plants (30 percent of the world’s emissions).

“We can demonstrate a process where we take lime and combine it with carbon dioxide to produce a cement-like material,” says Gaurav Sant, lead scientific contributor. “The big challenge we foresee with this is we’re not just trying to develop a building material. We’re trying to develop a process solution, an integrated technology which goes right from CO2 to a finished product.”