From Wastewater to Fertilizer

The National Science Foundation is spearheading a $2.4 million research initiative to develop new methods to create commercial fertilizer out of wastewater nutrients. Among the researchers working on this project, ECS member and chair of the Society’s Energy Technology Divison, Andrew Herring, is leading an electrochemical engineering team in electrode design, water chemistry, electrochemical operations, and developing a bench-scale electrochemical reactor design.

The goal of this project is to take the nitrogen and phosphorus that exists in wastewater and transform it into fertilizer struvite, which is made up of magnesium, ammonium, and phosphate.

“Basically, you’d have a hog barn and you’d collect the liquid effluent from the farm and run it through a reactor and you’d get a solid fertilizer out of the back and, hopefully, energy,” Herring, Colorado School of Mines professor, says in a statement. “At the end of the day, we hope to optimize this thing so it makes energy, saves water, and produces fertilizer for food production.”

This work is is a collaborative effort with ECS members Lauren Greenlee, lead princial investigator and Assistant Professor at the University of Arkansas; and Julie Renner, Assistant Professor at Case Western Reserve University.

This isn’t Herring’s first foray into water and energy research. During the PRiME 2016 meeting, Herring co-organized the Energy/Water Nexus: Power from Saline Solutions symposium.


Student Poster Session winners

Congratulations to the PRiME 2016 Student Poster Session winners!

It is with great pride that ECS honors the winners of the General Student Poster Session Awards for the PRiME 2016 meeting in Honolulu, Hawaii.  In following with the meeting tradition, awards recognized the top poster presentations in electrochemical and solid state categories.

ECS established the General Student Poster Session Awards in 1993 to acknowledge the eminence of its students’ work. The winners exhibit a profound understanding of their research topic and its relation to fields of interest to ECS.

In order to be eligible for the General Student Poster Session Awards, students must submit their abstracts to the Z01 General Society Student Poster Session symposium and present their posters at the biannual meeting. First and second place winners receive a certificate in addition to a cash award.

The winners of the General Student Poster Session Awards for the PRiME 2016 Meeting are as follows:


Join Additional Primary Divisions!

Attention prospective and current ECS members! Did you know? As of this year, you can belong to more than one primary division!


Each ECS division corresponds to a topical interest area. ECS has seven electrochemistry divisions and six solid state science and technology divisions:


Scientists can now directly probe hard-to-see layers of chemistry due to the development of an X-ray toolkit out of Lawrence Berkeley National Laboratory.

The research team behind the initiative believes that their development could provide insight about battery performance and corrosion. Additionally, it could give insight into a variety of chemical reactions, including biological and environmental processes.

The from LBNL:

In a first-of-its-kind experiment at Berkeley Lab’s Advanced Light Source, an X-ray source known as a synchrotron, researchers demonstrated this new, direct way to study the inner workings of an activity center in chemistry known as an “electrochemical double layer” that forms where liquids meets solids—where battery fluid (the electrolyte) meets an electrode, for example (batteries have two electrodes: an anode and a cathode).

Read the full article.

In a battery, changes in electrical potential can be seen in the electrochemical double layer.


Reutilizing carbon dioxide to produce clean burning fuels

Carbon dioxide

David Go has always seen himself as something of a black sheep when it comes to his scientific research approach, and his recent work in developing clean alternative fuels from carbon dioxide is no exception.

In 2015, Go and his research team at the University of Notre Dame were awarded a $50,000 grant to purse innovative electrochemical research in green energy technology through the ECS Toyota Young Investigator Fellowship. With a goal of aiding scientists in advancing alternative energies, the fellowship aims to empower young researchers in creating next-generation vehicles capable of utilizing alternative fuels that can lead to climate change action in transportation.

The road less traveled

While advancing research in electric vehicles and fuel cells tend to be the top research areas in sustainable transportation, Go and his team is opting to go down the road less traveled through a new approach to green chemistry: plasma electrochemistry.

(MORE: Read Go’s Meeting Abstract on this topic, entitled “Electrochemical Reduction of CO2(aq) By Solvated Electrons at a Plasma-Liquid Interface.”)

“Our approach to electrochemistry is completely a-typical,” Go, associate professor at the University of Notre Dame, says. “We use a technique called plasma electrochemistry with the aim of processing carbon dioxide – a pollutant – back into more useful products, such as clean-burning fuels.”


In a push for more basic research funding for electrochemical science, past ECS President Daniel Scherson testified before a U.S. House subcommittee to discuss innovations in solar fuels, electricity storage, and advanced materials.

“I want them to understand where electrochemistry fits in many aspects of our lives,” Scherson, the Frank Hovorka Professor of Chemistry at Case Western Reserve University, said prior to the hearing.

During the hearing, Scherson emphasized to the subcommittee that in order to solve some of society’s most pressing problems, more federal funding to basic electrochemistry research is critical. He further explained that without efforts in electrochemistry, nearly all aspects of energy storage and conversion – including batteries, fuels cells, EVs, and wind and solar energy – would cease to be viable.

“Electrochemistry is a two century old discipline that has reemerged in recent years as a key to achieve sustainability and improve human welfare,” Scherson told the subcommittee.

In recent years, budget cuts in federal spending have adversely affected scientific research. In April of this year, Sen. Jeff Flake (R-Ariz.) launched an attack on federal research dollars in the form of the Wastebook – a report detailing specific studies that the senator believes to be wasteful spending.


Montreal Electrochemistry Workshop

On January 22, 2016, the ECS Montreal Student Chapter hosted its first ever electrochemistry workshop. The focus of the workshop was the fabrication of silver-silver chloride reference electrodes, a staple of most electrochemistry experiments.

ECS Mtl Student Chapter - Electrochemistry Workshop Summary 3





The workshop included a short presentation discussing the theoretical aspects of references electrodes, after which students could observe a demonstration. Finally, each student was allowed to perform the fabrication protocol and everyone brought home their own reference electrode!


HIV and hepatitis C are among the leading causes of worldwide death. According to amfAR, an organization dedicated to eradicating the spread of HIV/AIDS through innovative research, nearly 37 million people are currently living with HIV. Of those 37 million, one third become co-infected with hepatitis C.

The threat of HIV and hepatitis C

The regions hit the hardest by this co-infection tend to be developing parts of the world, such as sub-Saharan Africa and Central and East Asia.

While these developing regions have measures to diagnosis HIV and hepatitis C, the rapid point-of-care tests used are typically unaffordable or unreliable.

An electrochemical solution

A group from McGill University is looking to change that with a recently developed, paper-based electrochemical platform with multiplexing and telemedicine capabilities that may enable low-cost, point-of-care diagnosis for HIV and hepatitis C co-infections within serum samples.


An article by Shelley D. Minteer and Henry White as part of the JES Focus Issue Honoring Allen J. Bard.

Allen J. Bard AwardThe Electrochemical Society founded the Allen J. Bard Award in 2013 to honor Prof. Allen J. Bard’s extensive contributions in the field of electrochemistry, and the first award was given in May 2015 at the ECS meeting in Chicago. In recognition of the establishment of this endowed award, we are delighted to dedicate this special issue of the Journal of The Electrochemical Society to Professor Bard.

Allen was born in New York City in 1933 and obtained his Bachelor of Science degree in Chemistry at City College of New York 1955. He continued his studies at Harvard University under the supervision of James J. Lingane, a renowned electroanalytical chemist, and received a Master’s degree in 1956 and a PhD in 1958. He then accepted an instructor position at the University of Texas and quickly moved up the ranks to Professor in 1967.

In the 58 years since arriving in Austin, Allen has mentored over 75 PhD students and 150 post-doctoral fellows. Their combined contributions to the field of electrochemistry are legendary, including electroanalytical techniques for evaluating electrode reaction mechanisms, simultaneous electrochemistry electron spin resonance (SEESR) techniques, nonaqueous solvents for investigating energetic species, electrogenerated chemiluminescence (ECL), polymer modified electrodes, semiconductor photoelectrochemistry, photocatalysis, scanning electrochemical microscopy (SECM), and single-particle collision electrochemistry.


Christian Amatore has given a new direction to electrochemistry and has had a pioneering role in the development of ultramicroelectrodes worldwide. He is currently the Director of Research at CNRS and will be giving the ECS Lecture at the 229th ECS Meeting in San Diego, CA, May 29-June 2, 2016. His talk is titled, “Seeing, Measuring and Understanding Vesicular Exocytosis of Neurotransmitters.”

Listen to the podcast and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.


  • Page 1 of 8