printablelii

The batteries have the ability to be integrated into the surface of the objects, making it seem like seem like there is no battery at all.

A new development out of the Ulsan National Institute of Science and Technology (UNIST) has yielded a new technique that could make it possible to print batteries on any surface.

With recent interests in flexible electronics—such as bendable screen displays—researchers globally have been investing research efforts into developing printable functional materials for both electronic and energy applications. With this, many researchers predict the future of the li-ion battery as one with far less size and shape restrictions, having the ability to be printed in its entirety anywhere.

The research team from UNIST, led by ECS member Sang-Young Lee, is setting that prediction on the track to reality. Their new paper published in the journal Nano Letters details the printable li-ion battery that can exist on almost any surface.

(more…)

Member Spotlight – Chennupati Jagadish

jagadishECS Fellow Chennupati Jagadish has been awarded the IEEE Nanotechnology Pioneer Award for his outstanding contributions to compound semiconductor nanowire and quantum dot optoelectronics.

Dr. Jagadish is a Laureate Fellow and Distinguished Professor at the Australian National University, where he has made major advances in compound semiconductor quantum dot and nanowire growth techniques and optoelectronic devices.

Previously, Dr. Jagadish was awarded the ECS Electronics and Photonics Division Award for his excellence in electronics research outstanding technical contribution to the field of electronics science.

Throughout his scientific career, Dr. Jagadish has published more than 620 research papers—some of which can be found in the Digital Library—and has 5 U.S. patents.

Some of Dr. Jagadish’s current research focuses on nanostructured photovoltaics, which provides novel concepts to produce a more efficient solar cell.

Liquid Antenna Controlled by Voltage

The liquid metal antenna can be tuned to listen to various frequencies by applying electrical voltage.Image: Jacob Adams/NCSU

The liquid metal antenna can be tuned to listen to various frequencies by applying electrical voltage.
Image: Jacob Adams/NCSU

The scientific community has been trying to tap into the potential of liquid metals for some time now, but have faced roadblocks in developing something that is highly efficient when paired with electronics. Now, North Carolina State University researchers have successfully designed a liquid metal antenna controlled by only electrical voltage.

The work is relatively simple in theory. A positive voltage applied to a liquid metal will make it expand, whereas the application of a negative voltage will make it contract.

“Our antenna prototype using liquid metal can tune over a range of at least two times greater than systems using electronic switches,” said Jacob Adams, assistant professor in the Department of Electrical and Computer Engineering at NCSU.

(more…)

50 Years of Moore’s Law

mooreThe iconic Moore’s Law will mark its 50th anniversary this Sunday, April 19th. In celebration, we’ll be taking a look at the solid state revolutionary who made the incredible prediction, the inception of the law, and the deep-rooted links between Gordon Moore and The Electrochemical Society.

The initial transformation in the electronics industry began with an invention at Bell Labs in late 1947 of a little device known as the transistor. The transistor acted as a catalyst of change not only for solid state science and the electronics industry, but also for the composition and spirit of ECS membership—which would begin to be centered on the Electronics Division.

Prior to this solid state surge, electronics—specifically the Electronics Division at ECS—was centered on topics such as phosphors and cathode ray tubes in light of the advent of television. Moore joined ECS in 1957 and helped transform the division into something new—something exciting.

(more…)

abernathyCammy Abernathy of the University of Florida will be awarded the 2015 Electronics and Photonics Division Award for spearheading research in materials science and engineering through thin-film electronic material innovation and novel research in metal organic chemical vapor deposition.

The prestigious award was established in 1968 to encourage excellence in electronics research and outstanding technical contribution to the field of electronics science.

Dr. Abernathy started her journey through solid state science at MIT in 1980, where she received her degree in materials science and engineering. After furthering her education at Stanford University, Dr. Abernathy continued in the world of academia at the University of Florida. She was appointed the College’s Associate Dean for Academic Affairs in 2004, and currently holds the position of Dean of the College of Engineering.

(more…)

Member Spotlight – Jim Edgar

Edgar's new patented process will allow for the building of better semiconductors.Source: Kansas State University

Edgar’s new patented process will allow for the building of better semiconductors.
Source: Kansas State University

The Electrochemical Society’s Jim Edgar has developed a new process to build better semiconductors, which will vastly improve the efficiency of electronic devices and help propel the semiconductor industry.

Edgar, a Kansas State university distinguished professor of chemical engineering and an active member of ECS since 1981, has just received a patent for his “Off-axis silicon carbide substrates” process, which is a way to build a better semiconductor. This new process could mean big things for the electronics and semiconductor manufacturing industries.

“It’s like a stacked cake separated by layers of icing,” Edgar said. “When the layers of semiconductors don’t match up very well, it introduces defects. Any time there is a defect, it degrades the efficiency of the device.”

(more…)

Magnetic Graphene

New research could lead to new multi-functional electronic devices.

New research could lead to new multi-functional electronic devices.

Graphene is regarded by many as a wonder material and hosts a multitude of amazing properties, but magnetism has never been one of them. The only way to make the material magnetic is by doping it with magnetic imputrites, but that tends to negatively impact its electronic properties. Now, a team of physicists at the University of California, Riverside decided to address this issue by finding a way to induce magnetism in graphene while also preserving its magnetic properties.

To do this, the team brought a graphene sheet very close to a magnetic insulator – an electrical insulator with magnetic properties.

“This is the first time the graphene has been made magnetic this way,” said Jing Shi, a professor of physics and astronomy, whose lab led the research. “The magnetic graphene acquires new electronic properties so that new quantum phenomena can arise. These properties can lead to new electronic devices that are more robust and multi-functional.”

(more…)

Layers of Logic Produce Skyscraper Chips

Stanford engineers have created a four-layer prototype high-rise chip. The bottom and top layers are transistors, which are sandwiched between two layers of memory.
Credit: Max Shulaker, Stanford

Cheaper, smaller, and faster – those are the three words we’re constantly hearing when it comes to innovation and development in electronics. Now, Stanford University engineers are adding a fourth word to that mantra – taller.

The Stanford team is about to reveal how to build a high-rise chip that could vault the performance of the single-story logic and memory chips on today’s circuit cards – thereby preventing the wires connecting logic and memory from jamming.

This from Stanford University:

The Stanford approach would end these jams by building layers of logic atop layers of memory to create a tightly interconnected high-rise chip. Many thousands of nanoscale electronic “elevators” would move data between the layers much faster, using less electricity, than the bottleneck-prone wires connecting single-story logic and memory chips today.

(more…)

‘Smart Skin’ Replicates Sense of Touch

A team has developed a skin that can stretch over the entire prosthesis; and its applications aren't just limited to pressure. It's embedded with ultrathin, single crystalline silicone nanoribbon, which enables an array of sensors.Credit: Kim et al./Nature Communications

The skin is embedded with ultrathin, single crystalline silicone nanoribbon, which enables an array of sensors.
Credit: Kim et al./Nature Communications

We’ve talked about the advancements in prosthetic limbs in the past, but now a group of researchers out of Seoul National University are taking innovation in prosthetics one step further with this new “smart skin.”

Researchers from the Republic of Korea have developed a stretchy synthetic skin embedded with sensors, which will be able to help those with prosthetics regain their sense of touch.

This from “Stretchable silicon nanoribbon electronics for skin prosthesis” in the journal Nature Communications:

This collection of stretchable sensors and actuators facilitate highly localized mechanical and thermal skin-like perception in response to external stimuli, thus providing unique opportunities for emerging classes of prostheses and peripheral nervous system interface technologies.

(more…)

Member Spotlight – Shelley Minteer

ECS's Shelley Minteer has developed a fuel cell that can convert jet fuel to electricity at room temperature without igniting the fuel.Credit: Dan Hixson/University of Utah College of Engineering

ECS’s Shelley Minteer has developed a fuel cell that can convert jet fuel to electricity at room temperature without igniting the fuel.
Credit: Dan Hixson/University of Utah College of Engineering

The Electrochemical Society’s Shelley Minteer and her team of engineers at The University of Utah have developed the first room-temperature fuel cell that uses enzymes to help jet fuel produce electricity without need to ignite the fuel.

The new fuel cells will be able to be used to power portable electronics, off-grid power, and sensors.

The study was published in the American Chemical Society journal ACS Catalysis with Minteer as the senior author.

“The major advance in this research is the ability to use Jet Propellant-8 directly in a fuel cell without having to remove sulfur impurities or operate at very high temperature,” says Minteer. “This work shows that JP-8 and probably others can be used as fuels for low-temperature fuel cells with the right catalysts.”

The standard technique for converting jet fuel to electricity is both difficult, due to the sulfur content, and inefficient, with only 30 percent of the fuel converted to electricity under the best conditions.

This from The University of Utah:

To overcome these constraints, the Utah researchers used JP-8 in an enzymatic fuel cell, which uses JP-8 for fuel and enzymes as catalysts. Enzymes are proteins that can act as catalysts by speeding up chemical reactions. These fuel cells can operate at room temperature and can tolerate sulfur.

Read the full article here.

Minteer is a valued member of ECS and is on the editorial board of the Journal of The Electrochemical Society and ECS Electrochemistry Letters – along with being a past chair of the Physical and Analytical Electrochemistry Division. You can also read her published research in our Digital Library.

Make sure to sign up for our e-Alerts so you don’t miss the newest, cutting-edge research!

  • Page 3 of 4