The ECS Journal of Solid State Science and Technology (JSS) is one of the newest peer-reviewed journals from ECS launched in 2012.

The ECS Journal of Solid State Science and Technology (JSS) is one of the newest peer-reviewed journals from ECS launched in 2012.

Printing technologies in an atmospheric environment offer the potential for low-cost and materials-efficient alternatives for manufacturing electronics and energy devices such as luminescent displays, thin film transistors, sensors, thin film photovoltaics, fuel cells, capacitors, and batteries.

This focus issue will cover state-of-the-art efforts that address a variety of approaches to printable functional materials and devices.

Topics of interest include but are not limited to:

  • Printable functional materials: metals; organic conductors; organic and inorganic semiconductors; and more
  • Functional printed devices: RFID tags and antenna; thin film transistors; solar cells; and more
  • Advances in printing and conversion processes: ink chemistry; ink rheology; printing and drying process; and more
  • Advances in conventional and emerging printing techniques: inkjet printing; aerosol printing; flexographic printing; and more

Find out more!

Deadline for submission of manuscripts is November 30, 2014.

Please submit manuscripts here.

First Graphene-Based Flexible Display Produced

"This is a significant step forward to enable fully wearable and flexible devices ." -Andrea Ferrari, Director of the Cambridge Graphene Centre

“This is a significant step forward to enable fully wearable and flexible devices .”
-Andrea Ferrari, Director of the Cambridge Graphene Centre

There has been quite the buzz around graphene lately. With this material being among the strongest and most lightweight known, it has the potential to revolutionize industries from healthcare to electronics. And revolutionize is exactly what the Cambridge Graphene Centre (CGC) and Plastic Logic have set out to do.

With the CGC’s graphene expertise and Plastic Logic’s already developed technology for flexible electronics, the two came together to demonstrate the first graphene-based flexible display.

This from University of Cambridge:

The new prototype is an active matrix electrophoretic display, similar to the screens used in today’s e-readers, except it is made of flexible plastic instead of glass. In contrast to conventional displays, the pixel electronics, or backplane, of this display includes a solution-processed graphene electrode, which replaces the sputtered metal electrode layer within Plastic Logic’s conventional devices, bringing product and process benefits.

(more…)

  • Page 4 of 4