Carbon dioxideA new study describes the mechanics behind an early key step in artificially activating carbon dioxide so that it can rearrange itself to become the liquid fuel ethanol.

Solving this chemical puzzle may one day lead to cleaner air and renewable fuel.

The scientists’ ultimate goal is to convert harmful carbon dioxide (CO2) in the atmosphere into beneficial liquid fuel. Currently, it is possible to make fuels out of CO2—plants do it all the time—but researchers are still trying to crack the problem of artificially producing the fuels at large enough scales to be useful.

Theorists at Caltech used quantum mechanics to predict what was happening at atomic scales, while experimentalists at the Department of Energy’s (DOE) Lawrence Berkeley National Lab (Berkeley Lab) used X-ray studies to analyze the steps of the chemical reaction.

“One of our tasks is to determine the exact sequence of steps for breaking apart water and CO2 into atoms and piecing them back together to form ethanol and oxygen,” says William Goddard professor of chemistry, materials science, and applied physics, who led the Caltech team. “With these new studies, we have better ideas about how to do that.”

(more…)

The 231st ECS Meeting took place last week in New Orleans, LA, where Way Kuo, president at City University of Hong Kong, delivered the ECS Lecture, “A Risk Look at Energy Development.” In his talk, Kuo highlighted the many risks we face every day, ranging from air pollution to auto accidents to cyber-attacks. While those risks exist, Kuo pointed out that the biggest risk today is energy and energy safety, including issues of energy consumption, global warming, and sustainability.

“Renewable energies have witnessed rapid development in recent years worldwide in a concerted effort to curb greenhouse gas emissions,” Kuo wrote in his meeting abstract. “And yet, wind power production still constitutes only 4% in the global power mix and solar PV represents 1%, while fossil fuels remain the world’s dominant energy source, accounting for around 65%. Coal, the main culprit for greenhouse gas emissions, represents 43% of fossil fuels, even though the coal-fired generation share of total electricity production is declining, and still causes 7 million death a year due to air pollution, according to the United Nations. Any discussion of energies today cannot neglect nuclear energy as a key base-load power, despite concerns about possible radiation leaks and nuclear waste.”

Recently, Kuo wrote an article in the South China Morning Post, where he discussed the importance of properly capturing and analyzing scientific data, which will improve our ability to predict and respond to disasters. The article, which was adapted from Kuo’s ECS Lecture, analyzes security issues related to everything from terrorism to foodborne illness.

(more…)

By: Erin Baker, University of Massachusetts Amherst

Renewable grideThe U.S. Department of Energy spends US$3-$4 billion per year on applied energy research. These programs seek to provide clean and reliable energy and improve our energy security by driving innovation and helping companies bring new clean energy sources to market. The Conversation

President Trump’s detailed budget request reportedly will ask Congress to cut funding for the Energy Department’s clean energy programs by almost 70 percent, from $2 billion this year to $636 million in 2018. Clean energy advocates and environmental groups strongly oppose such drastic cuts, but some reductions are likely. Where should DOE focus its limited funding to produce the greatest energy and environmental benefits?

My colleagues Laura Diaz Anadon of Cambridge University and Valentina Bosetti of Bocconi University and I recently reviewed 15 studies that asked this question. We found a number of clean energy technologies in electricity and transportation that will help us slow climate change by reducing greenhouse gas emissions, even at lower levels of investment.

(more…)

By: Joshua D. Rhodes, University of Texas at Austin; Michael E. Webber, University of Texas at Austin; Thomas Deetjen, University of Texas at Austin, and Todd Davidson, University of Texas at Austin

SolarU.S. Secretary of Energy Rick Perry in April requested a study to assess the effect of renewable energy policies on nuclear and coal-fired power plants. The Conversation

Some energy analysts responded with confusion, as the subject has been extensively studied by grid operators and the Department of Energy’s own national labs. Others were more critical, saying the intent of the review is to favor the use of nuclear and coal over renewable sources.

So, are wind and solar killing coal and nuclear? Yes, but not by themselves and not for the reasons most people think. Are wind and solar killing grid reliability? No, not where the grid’s technology and regulations have been modernized. In those places, overall grid operation has improved, not worsened.

To understand why, we need to trace the path of electrons from the wall socket back to power generators and the markets and policies that dictate that flow. As energy scholars based in Texas – the national leader in wind – we’ve seen these dynamics play out over the past decade, including when Perry was governor.

(more…)

BatteryTaking a detailed look inside energy storage systems could help solve potential issues before they arise. A team of researchers from Brookhaven National Laboratory are doing just that by imaging the inner workings of a sodium-metal sulfide battery, leading them to understand the cause of degraded performance.

“We discovered that the loss in battery capacity is largely the result of sodium ions entering and leaving iron sulfide—the battery electrode material we studied—during the first charge/discharge cycle,” says Jun Wang, co-author of the study. “The electrochemical reactions involved cause irreversible changes in the microstructure and chemical composition of iron sulfide, which has a high theoretical energy density. By identifying the underlying mechanism limiting its performance, we seek to improve its real energy density.”

Performance degradation in charge/discharge cycles has been the main problem researchers encounter when pursuing sodium-ion battery research. While the battery’s performance points to degradation issues, not much was previously known about what caused this degradation.

(more…)

From Bacteria to Electrical Generator

BacteriaThe estimated total number of bacteria of the planet is estimated at five nonillion, and the world of bacteria is stocked with potential, including electrical production.

Researchers from the University of California are looking to tap into some of that potential by looking at “electrogenic” bacteria, which generate current as part of their metabolism. The research team has found a new way to mimic that ability upon non-electrogenic bacteria, opening up opportunities for new developments in sustainable electricity generation and wastewater treatment.

“The concept here is that if we just close the lid of the wastewater treatment tank and then give the bacteria an electrode, they can produce electricity while cleaning the water,” says Zach Rengert, co-first author of the study. “And the amount of electricity they produce will never power anything very big, but it can offset the cost of cleaning water.”

(more…)

GridA new study published in the Proceedings of the National Academy of Sciences predicts that as climate change continues to accelerate average temperatures, electrical grids may be unable to meet peak energy needs by the end of the century.

The electrical grid is the central component of energy distribution and consumption. In order to upgrade this massive infrastructure to meet increasing demands, the researchers behind the study estimate nearly $180 billion would have to be invested in the U.S. grid.

This from the study:

As the electricity grid is built to endure maximum load, our findings have significant implications for the construction of costly peak generating capacity.

Read the full paper.

On top of acknowledging the correlation between increasingly hot days and higher demand for electricity (i.e. increased use of air conditioners and other cooling units), the study also acknowledges how the grid could react to this extra demand for electricity during peak hours of the day.

(more…)

Solar-powered Water Purifier

Water purificationIn an effort to purify water, researchers from the University at Buffalo are using carbon-dipped paper to make dirty water drinkable.

Those behind the research believe this new development could be a cheap and efficient way to address a global shortage in drinking water, specifically in developing areas.

(MORE: See what ECS members are doing to address global water and sanitation issues.)

“Using extremely low-cost materials, we have been able to create a system that makes near maximum use of the solar energy during evaporation,” says Qiaoqiang Gan, lead researcher. “At the same time, we are minimizing the amount of heat loss during this process.”

This from University at Buffalo:

The team built a small-scale solar still. The device, which they call a “solar vapor generator,” cleans or desalinates water by using the heat converted from sunlight. Here’s how it works: The sun evaporates the water. During this process, salt, bacteria, or other unwanted elements are left behind as the liquid moves into a gaseous state. The water vapor then cools and returns to a liquid state, where it is collected in a separate container without the salt or contaminants.

(more…)

Plastic treeNew technology that mimics the branches and leaves of a cottonwood tree can generate electricity with the help of the wind.

Researchers say that the new technology is not meant to be a replacement for wind turbines, but could offer an alternative electricity source for those looking for small, unobtrusive machines to transform wind into energy.

“The possible advantages here are aesthetics and its smaller scale, which may allow off-grid energy harvesting,” says Michael McCloskey, co-author of the study. “We set out to answer the question of whether you can get useful amounts of electrical power out of something that looks like a plant. The answer is ‘possibly,’ but the idea will require further development.”

On top of efficiency and affordability, consumers are also looking for alternative energy technologies to be aesthetically attractive, as demonstrated in Tesla’s solar roof.

According to McCloskey, cell phone towers in urban locations are sometimes camouflaged as trees to offer better aesthetic properties. The researchers believe that towers such as this, which already host fake leaves, could be greatly improved by implementing this technology to tap energy from the leaves and provide further functionality.

(more…)

“We all need to understand each other and what we can do together to benefit the greater community.”
-Way Kuo

Way Kuo is president of the City University of Hong Kong. He is a member of the U.S. National Academy of Engineering, and a Foreign Member of the Chinese Academy of Engineering, and Russian Academy of Engineering.

He was the first foreign expert invited to discuss nuclear safety following the Fukushima incident. He argues that a holistic view of energy development is required, one that prioritizes the production and use of reliable energy sources over that of polluting and volatile ones. He maps out a policy that encourages and rewards the conservation of energy and efficiency in energy use.

You can meet Kuo in person at the 231st ECS Meeting this May in New Orleans, LA, where he will deliver the ECS Lecture, entitled “A Risk Look at Energy Development.”

Listen to the podcast and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.

(more…)

  • Page 1 of 24