CellphoneThe development of the lithium-ion battery has helped enable the modern day electronics revolution, making possible everything from cellphones to laptops to electric vehicles and even grid-scale energy storage.

However, those batteries have limited lifespans. Battery expert Daniel P. Abraham is looking to address that.

“As your cellphone battery ages, you notice that you have to plug it in more often,” says Abraham, ECS member and scientist at Argonne National Laboratory. “Over a period of time, you are not able to store as much charge in the battery, and that is the process we call capacity fade.”

Abraham is a co-author of an open access paper recently published in the Journal of The Electrochemical Society, “Transition Metal Dissolution, Ion Migration, Electrocatalytic Reduction and Capacity Loss in Lithium-Ion Full Cells,” which addresses the question of why your battery doesn’t age well.

A majority of today’s electronic devices are powered by the lithium-ion battery. In order for the battery to store and release energy, lithium ions move back and forth between the positive and negative electrodes through an electrolyte.  In theory, the ions could travel back and forth an infinite number of times, resulting in a battery that lasts forever.

But that’s not what happens in the batteries that power your laptops and your electric vehicles. According to Abraham, unwanted side reactions often occur as ions move between the electrodes, resulting in batteries that lose capacity over time.

(more…)

The electric vehicle market continues to build momentum every year, with consumers around the world growing more interested. But in order for EVs to pave the way for the future of transportation, more efficient, longer-lasting batteries will need to be developed.

That’s where ECS member Jeff Dahn, leader of Tesla’s researcher partnership through his Dalhousie University research group, comes in. Recently, Dahn and his team unveiled new chemistry that could increase battery lifecycle at high voltages without significant degradation.

(more…)

BatteryThe consumer demand for seamless, integrated technology is on the rise, and with it grows the Internet of Things, which is expected to grow to a multitrillion-dollar market by 2020. But in order to develop a fully integrated electronic network, flexible, lightweight, rechargeable power sources will be required.

A team of researchers from Ulsan National Institute of Science and Technology is looking to address that issue, developing inkjet-printed batteries that can be modified to fit devices of any shape and size. The team reports that the newly developed inks can be printed onto paper to create a new class of printed supercapacitors.

(READ: Rise of Cyber Attacks: Security in the Digital Age)

This from Ulsan National Institute of Science and Technology:

The process involves using a conventional inkjet printer to print a preparatory coating—a ‘wood cellulose-based nanomat’—onto a normal piece of A4 paper. Next, an ink of activated carbon and single-walled nanotubes is printed onto the nanomat, followed by an ink made of silver nanowires in water. These two inks form the electrodes. Finally, an electrolyte ink—formed of an ionic liquid mixed with a polymer that changes its properties when exposed to ultraviolet light—is printed on top of the electrodes. The inks are exposed at various stages to ultraviolet irradiation and finally the whole assembly is sealed onto the piece of paper with an adhesive film.

(more…)

BatteryLike all things, batteries have a finite lifespan. As batteries get older and efficiency decreases, they enter what researchers call “capacity fade,” which occurs when the amount of charge your battery could once hold begins to decrease with repeated use.

But what if researchers could reduce this capacity fade?

That’s what researchers from Argonne National Laboratory are aiming to do, as demonstrated in their open access paper, “Transition Metal Dissolution, Ion Migration, Electrocatalytic Reduction and Capacity Loss in Lithium-Ion Full Cells,” which was recently published in the Journal of The Electrochemical Society.

The capacity of a lithium-ion battery directly correlates to the amount of lithium ions that can be shuttled back and forth as the device is charged and discharged. Transition metal ions make this shuttling possible, but as the battery is cycled, some of those ions get stripped out of the cathode material and end up at the battery’s anode.

(more…)

BatteryResearchers from Columbia University School of Engineering and Applied Science recently developed a method that could result in safer, longer-lasting, bendable lithium-ion batteries. To do this, the team applied ice-templating to control the structure of the solid electrolyte for lithium-ion batteries.

Recent reports of cell phones and hoverboards bursting into flames have made people aware of the safety concerns related to the lithium-ion battery’s liquid electrolyte. The researchers behind this new work decided to confront the safety issues by exploring the use of a solid electrolyte, therefore developing an all-solid-state lithium battery.

[The researchers] were interested in using ice-templating to fabricate vertically aligned structures of ceramic solid electrolytes, which provide fast lithium ion pathways and are highly conductive. They cooled the aqueous solution with ceramic particles from the bottom and then let ice grow and push away and concentrate the ceramic particles. They then applied a vacuum to transition the solid ice to a gas, leaving a vertically aligned structure. Finally, they combined this ceramic structure with polymer to provide mechanical support and flexibility to the electrolyte.

(more…)

BatteryA new mathematical model may help researchers design new materials for use in high-power batteries. According to the research team, the model could benefit chemists and materials scientists who typically rely on a trial and error method when developing new materials for batteries and capacitors.

“The potential here is that you could build batteries that last much longer and make them much smaller,” says Daniel Tartakovsky, co-author of the study. “If you could engineer a material with a far superior storage capacity than what we have today, then you could dramatically improve the performance of batteries.”

Demand for affordable, efficient energy storage continues to increase as more entities transition toward renewable energy. While there are many researchers working in the area of energy storage, the team behind this development is looking at the field in a new light.

(more…)

BatteryOne of the keys to developing a successful electric vehicle relies on energy storage technology. For an EV to be successful in the marketplace, it must be able to travel longer distances (i.e. over 300 miles on a single charge).

A team of researchers from Georgia Institute of Technology, including ECS fellow Meilin Liu, has recently created a nanofiber that they believe could enable the next generation of rechargeable batteries, and with it, EVs. The recently published research describes the team’s development of double perovskite nanofibers that can be used as highly efficient catalysts in fast oxygen evolution reactions. Improvements in this key process could open new possibilities for metal-air batteries.

“Metal-air batteries, such as those that could power electric vehicles in the future, are able to store a lot of energy in a much smaller space than current batteries,” Liu says. “The problem is that the batteries lack a cost-efficient catalyst to improve their efficiency. This new catalyst will improve that process.”

(more…)

By: Jonathan Coopersmith, Texas A&M University

EVImagine if you could gas up your GM car only at GM gas stations. Or if you had to find a gas station servicing cars made from 2005 to 2012 to fill up your 2011 vehicle. It would be inconvenient and frustrating, right? This is the problem electric vehicle owners face every day when trying to recharge their cars. The industry’s failure, so far, to create a universal charging system demonstrates why setting standards is so important – and so difficult.

When done right, standards can both be invisible and make our lives immeasurably easier and simpler. Any brand of toaster can plug into any electric outlet. Pulling up to a gas station, you can be confident that the pump’s filler gun will fit into your car’s fuel tank opening. When there are competing standards, users become afraid of choosing an obsolete or “losing” technology.

Most standards, like electrical plugs, are so simple we don’t even really notice them. And yet the stakes are high: Poor standards won’t be widely adopted, defeating the purpose of standardization in the first place. Good standards, by contrast, will ensure compatibility among competing firms and evolve as technology advances.

My own research into the history of fax machines illustrates this well, and provides a useful analogy for today’s development of electric cars. In the 1960s and 1970s, two poor standards for faxing resulted in a small market filled with machines that could not communicate with each other. In 1980, however, a new standard sparked two decades of rapid growth grounded in compatible machines built by competing manufacturers who battled for a share of an increasing market. Consumers benefited from better fax machines that seamlessly worked with each other, vastly expanding their utility.

(more…)

25 Years of Lithium-ion Batteries

Focus IssuesIn June 2016, the International Meeting on Lithium Batteries (IMLB) in Chicago successfully celebrated 25 years of the commercialization of lithium-ion batteries. According to Doron Aurbach, technical editor of the Batteries and Energy Storage topical interest area of the Journal of The Electrochemical Society, research efforts in the Li-battery community continues to provide ground-breaking technological success in electromobility and grid storage applications. He hopes this research will continue to revolutionize mobile energy supply for future advances in ground transportation.

ECS has published 66 papers for a new IMLB focus issue in the Journal of The Electrochemical Society. All papers are open access at no charge to the authors and no charge to download thanks to ECS’s Free the Science initiative!

(READ: Focus Issue of Selected Papers from IMLB 2016 with Invited Papers Celebrating 25 Years of Lithium Ion Batteries)

The focus issue provides important information on the forefront of advanced battery research that appropriately reflects the findings from the symposium.

(more…)

John Goodenough may be 94-years old, but he shows no sign of slowing down. Now, the co-inventor of the lithium-ion battery has developed the first all-solid-state battery cells that could result in safer, longer-lasting batteries for everything from electric cars to grid energy storage.

“Cost, safety, energy density, rates of charge and discharge and cycle life are critical for battery-driven cars to be more widely adopted,” Goodenough says in a statement. “We believe our discovery solves many of the problems that are inherent in today’s batteries.”

(more…)

  • Page 1 of 7