New Options for Grid Energy Storage

Energy storageResearchers from Oregon State university have developed the first battery that uses only hydronium ions as the charge carrier, which the team believes could yield promising results for the future of sustainable energy storage.

Particularly, the researchers are interested in the area of stationary storage. This type of energy storage primarily refers to on-grid storage to harness power from intermittent sources, such as wind or solar, for later use in general distribution. Stationary energy storage is vital for the energy landscape to transition to more renewable types of energy because it will allow the electrical grid to continue to function when the sun goes down and the wind stops blowing.

This from Oregon State University:

Hydronium, also known as H3O+, is a positively charged ion produced when a proton is added to a water molecule. Researchers in the OSU College of Science have demonstrated that hydronium ions can be reversibly stored in an electrode material consisting of perylenetetracarboxylic dianhydridem, or PTCDA.

(more…)

Battery

Source: iStock

Today’s electronics consumers all have one thing in common: a desire for smartphones and other portable devices to have longer battery lives. Researchers from the University College Cork are looking to deliver just that with a new development that extends the cycle life of the lithium-ion battery to near record-length by using a key ingredient found in sunscreen.

The method, developed by ECS member and vice chair of the Society’s Electronics and Photonics Division, Colm O’Dwyer, and past members David McNulty and Elaine Carroll, uses titanium dioxide, which is a naturally occurring material capable of absorbing ultraviolet light.

When titanium dioxide is made into a porous substance, it can be charged and discharged over 5,000 times – or 13.5 years – without a drop in capacity.

(more…)

CellphoneA new paper published in the Journal of The Electrochemical Society, “Mixed Conduction Membranes Suppress the Polysulfide Shuttle in Lithium-Sulfur Batteries,” describes a new battery membrane that makes the cycle life of lithium-sulfur batteries comparable to their lithium-ion counterparts.

The research, led by ECS Fellow Sri Narayan, offers a potential solution to one of the biggest barriers facing next generation batteries: how to create a tiny battery that packs a huge punch.

Narayan and Derek Moy, co-author of the paper, believe that lithium-sulfur batteries could be the answer.

The lithium-sulfur battery has been praised for its high energy storage capacity, but hast struggled in competing with the lithium-ion battery when it comes to cycle life. To put it in perspective, a lithium-sulfur battery can be charged between 50 and 100 times; a lithium-ion battery lasts upwards of 1,200 cycles.

To address this issue, the researchers devised the “Mixed Conduction Membrane” (MCM).

(more…)

BatteryIn an effort to develop an eco-friendly battery, researchers from Ulsan National Institute of Science and Technology (UNIST) have created a battery that can store and produce electricity by using seawater.

The research is expected to dramatically improve cost and stability issues over the next five years, with researchers confident about commercialization.

The driving force behind the battery is the sodium found in seawater. Because sodium is so abundant, the researchers believe that this new system will be an attractive supplement to existing battery technologies. Because the seawater battery is cheaper and more environmentally friendly than lithium-ion batteries, the team says the seawater battery could provide an alternative option in large-scale energy storage.

This from UNIST:

Seawater batteries are similar to their lithium-ion cousins since they store energy in the same way. The battery extracts sodium ions from the seawater when it is charged with electrical energy and stores them within the cathode compartment. Upon electrochemical discharge, sodium is released from the anode and reacts with water and oxygen from the seawater cathode to form sodium hydroxide. This process provide energy to power, for instance, an electric vehicle.

(more…)

By: Jackie Flynn, Stanford University

UreaA battery made with urea, commonly found in fertilizers and mammal urine, could provide a low-cost way of storing energy produced through solar power or other forms of renewable energy for consumption during off hours.

Developed by Stanford chemistry Professor Hongjie Dai and doctoral candidate Michael Angell, the battery is nonflammable and contains electrodes made from abundant aluminum and graphite. Its electrolyte’s main ingredient, urea, is already industrially produced by the ton for plant fertilizers.

“So essentially, what you have is a battery made with some of the cheapest and most abundant materials you can find on Earth. And it actually has good performance,” said Dai. “Who would have thought you could take graphite, aluminum, urea, and actually make a battery that can cycle for a pretty long time?”

In 2015, Dai’s lab was the first to make a rechargeable aluminum battery. This system charged in less than a minute and lasted thousands of charge-discharge cycles. The lab collaborated with Taiwan’s Industrial Technology Research Institute (ITRI) to power a motorbike with this older version, earning Dai’s group and ITRI a 2016 R&D 100 Award. However, that version of the battery had one major drawback: it involved an expensive electrolyte.

The newest version includes a urea-based electrolyte and is about 100 times cheaper than the 2015 model, with higher efficiency and a charging time of 45 minutes. It’s the first time urea has been used in a battery. According to Dai, the cost difference between the two batteries is “like night and day.” The team recently reported its work in the Proceedings of the National Academy of Sciences.

(more…)

ToyotaThe ECS Toyota Young Investigator Fellowship kicked off in 2014, establishing a partnership between The Electrochemical Society and Toyota Research Institute of North America, aimed at funding young scholars pursuing innovative research in green energy technology.

The proposal deadline for the year’s fellowship is Jan. 31, 2017. Apply now!

While you put together your proposals, check out what Patrick Cappillino, one of the fellowship’s inaugural winners, says about his experience with the fellowship and the opportunities it presented.


The Electrochemical Society: Your proposed topic for the ECS Young Investigator Toyota Fellowship was “Mushroom-derived Natural Products as Flow Battery Electrolytes.” What inspired that work?

Patrick Cappillino: This research was inspired by a conversation with a colleague. I was relating the problem of redox instability in flow battery electrolytes. He told me his doctoral work had focused on an interesting molecule called Amavadin, produced by mushrooms, that was extremely stable and easy to make. The lightbulb really went off when we noticed that the starting material was the decomposition product of another flow battery electrolyte that has problems with instability.

(more…)

LI-SM3ECS is sponsoring the Lithium Sulfur Batteries: Mechanisms, Modelling and Materials (Li-SM3) 2017 Conference, taking place April 26-27 in London.

This year marks the second Li-SM3 conference, which will bring together top academics, scientists, and engineers from around the world to discuss lithium sulfur rechargeable batteries, among other related topics.

The conference will include four keynote speakers, including ECS member Ratnakumar Bugga, who will deliver a talk entitled “High Energy Density Lithium-Sulfur Batteries for NASA and DoD Applications.” Learn more about the speakers in the conference agenda.

There’s still time to submit a poster abstract. Deadline for posters is March 3.

Register for Li-SM3 today!

The Search for a Super Battery

From electric vehicles to grid storage for renewables, batteries are key components in many of tomorrow’s innovations. But current commercialized batteries face problems of price, efficiency, safety, and life-cycle. The television series, NOVA, is exploring many of those issues in the upcoming episode, “Search for the Super Battery.”

A preview of the episode by CBS News explores two innovators who are working toward the next big thing in battery technology.

(more…)

Catalysts

Image: MIT

The future of renewable energy heavily depends on energy storage technologies. At the center of these technologies are oxygen-evaluation reactions, which make possible such processes as water splitting, electrochemical carbon dioxide reduction, and ammonia production.

However, the kinetics of the oxygen-evolution reactions tend to be slow. But metal oxides involved in this process have catalytic activities that vary over several orders of magnitude, with some exhibiting the highest such rates reported to date. The origins of these activates are not well-understood by the scientific community.

A new study from MIT, led by 2016 winner of the Battery Division Research Award, Yang Shao-Horn, shows that in some of these catalysts, the oxygen does not only come from surrounding water molecules – some actually come from within the crystal lattice of the catalyst material itself.

(more…)

Renewable liquid fuelRenewable energy is on the rise, but how we store that energy is still up for debate.

“Renewable energy is growing, but it’s intermittent,” says Grigorii Soloveichik, program director at the United States Department of Energy’s Advanced Research Projects Agency. “That means we need to store that energy and we have two ways to do that: electricity or liquid fuels.”

According to Soloveichik, electricity and batteries are sufficient for short term energy storage, but new technologies such as liquid fuels derived from renewable energy must be considered for long term storage.

During the PRiME 2016 meeting in October, Soloveichik presented a talk titled, “Development of Transformational Technologies,” where he described the advantages that carbon neutral liquid fuels have over other convention means – such as batteries – for efficient, affordable, long term storage for renewable energy sources.

Rise of renewables

In the United States, 16.9 percent of electricity generation comes from renewables – a 9.3 percent increase since 2015. Globally, climate talks such as the Paris Agreement help bolster the rise of renewable energy around the world. Soloveichik expects that growth to continue in light of the affordability of clean energy technologies and government mandates that aim at environmental protection and a reduction of the carbon footprint. However, the continued rise in renewable dependence will impact the current grid infrastructure.

“More renewables will result in more stress on the grid,” Soloveichik says. “All of these new sources are intermittent, so we need to be able to store huge amounts of energy.”

(more…)

  • Page 5 of 10