The Future of Superconductors

This emerging technology may lead to a theory to guide future engineers.Image: Futurity/Christian Benke

This emerging technology may lead to a theory to guide future engineers.
Image: Futurity/Christian Benke

Researchers from Cornell University are focusing their efforts on developing superconductors that can carry large energy currents, thereby expanding the possible benefits that can be produced by high-temperature superconductors.

In order to coax the superconductors to carry these large currents, researchers have previously bombarded materials with high-energy ion beams. This approach increased the current density carried, but still left the question of what is actually happening in this reaction.

Thanks to the technology of the scanning tunneling microscope (STM), the researchers can now understand what is happening at the atomic level. (German physicist, Gerd Binnig, won the Nobel Prize in Physics in 1986 for the invention of the scanning tunneling microscope He gave the ECS Lecture at the 203rd ECS Meeting in Paris, France.)

(more…)

ECS Masters – Esther Takeuchi

“Scientific discovery is a marathon, not a sprint. Sometimes you’re running faster or slower, but you always have to keep going.”
Esther Takeuchi

Esther Takeuchi was the key contributor to the battery system that powers life-saving cardiac defibrillators.


She currently holds more than 150 U.S. patents, more than any other American woman, which earned her a spot in the Inventors Hall of Fame. Her innovative work in battery research also landed her the National Medal of Technology and Innovation in 2008.

Make sure to subscribe to our YouTube channel!

You can also listen to this installment of ECS Masters as an audio podcast.

1-utarlingtont

The new solar cell developed by the University of Texas at Arlington team is more efficient and can store solar energy at night.
Image: UT Arlington

A research team from the University of Texas at Arlington comprised of both present and past ECS members has developed a new energy cell for large-scale solar energy storage even when it’s dark.

Solar energy systems that are currently in the market and limited in efficiency levels on cloudy days, and are typically unable to convert energy when the sun goes down.

The team, including ECS student member Chiajen Hsu and two former ECS members, has developed an all-vanadium photoelectrochemical flow cell that allows for energy storage during the night.

“This research has a chance to rewrite how we store and use solar power,” said Fuqiang Liu, past member of ECS and assistant professor in the Materials Science and Engineering Department who led the research team. “As renewable energy becomes more prevalent, the ability to store solar energy and use it as a renewable alternative provides a sustainable solution to the problem of energy shortage. It also can effectively harness the inexhaustible energy from the sun.”

(more…)

Engineering Stretchable Batteries

Recently, scientists have been looking at the Japanese paper-folding art of origami as inspiration for novel flexible energy-storage technologies. While there have been breakthroughs in battery flexibility, there has yet to be a successful development of stretchable batteries. Now, researchers from Arizona State University have unveiled a way to make batteries stretch, yielding big potential outcomes for wearable electronics.

The Arizona State University research team includes ECS member and advisor of the ECS Valley of the Sun student chapter, Candace K. Chan. Chan and the rest of the team were inspired by a variation of origami called kirigami when developing this new generation of lithium-ion batteries.

According to the researchers, the new battery can be stretched more than 150 percent of its original size and still maintain full functionality.

Liquid Antenna Controlled by Voltage

The liquid metal antenna can be tuned to listen to various frequencies by applying electrical voltage.Image: Jacob Adams/NCSU

The liquid metal antenna can be tuned to listen to various frequencies by applying electrical voltage.
Image: Jacob Adams/NCSU

The scientific community has been trying to tap into the potential of liquid metals for some time now, but have faced roadblocks in developing something that is highly efficient when paired with electronics. Now, North Carolina State University researchers have successfully designed a liquid metal antenna controlled by only electrical voltage.

The work is relatively simple in theory. A positive voltage applied to a liquid metal will make it expand, whereas the application of a negative voltage will make it contract.

“Our antenna prototype using liquid metal can tune over a range of at least two times greater than systems using electronic switches,” said Jacob Adams, assistant professor in the Department of Electrical and Computer Engineering at NCSU.

(more…)

One Step Closer to Bionic Brain

New research shows that we’re one step closer to being able to replicate the human brain outside of the body, which could lead to life-altering research into common conditions such as Alzheimer’s and Parkinson’s disease.

Project leader and ECS published author Sharath Sriram and his group have successfully engineered an electronic long-term memory cell, which mimics the way the human brain processes information.

“This is the closest we have come to creating a brain-like system with memory that learns and stores analog information and is quick at retrieving this stored information,” Sharath said.

(more…)

Nanoporous gold features high effective surface area, tunable pore size, and high electrical conductivity and compatibility with traditional fabrication techniques.Image: Ryan Chen/LLNL

Nanoporous gold features high effective surface area, tunable pore size, and high electrical conductivity and compatibility with traditional fabrication techniques.
Image: Ryan Chen/LLNL

Researchers from Lawrence Livermore National Laboratory and the University of California, Davis have recently published a paper showing that covering an implantable neural electrode with nanoporus gold could potentially eliminate the risk of scar tissue forming over the electrode’s surface.

Two former ECS member, Erkin Seker and Juergen Biener, were among the researchers involved with this development.

This from Lawrence Livermore National Laboratory:

The team demonstrated that the nanostructure of nanoporous gold achieves close physical coupling of neurons by maintaining a high neuron-to-astrocyte surface coverage ratio. Close physical coupling between neurons and the electrode plays a crucial role in recording fidelity of neural electrical activity.

(more…)

Engineering a Better Solar Cell

This new development will lead to accelerated improvements in the materials' uniformity, stability, and efficiency.Source: University of Washington

This new development will lead to accelerated improvements in the materials’ uniformity, stability, and efficiency.
Source: University of Washington

In light of the growth in solar energy research, scientists have been directing a lot of attention toward perovskites. The materials’ wide range of use and potential to outpace silicon-based semiconductors in the field of solar cells makes perovskites an interesting area of research with great potential.

Researchers from the University of Washington, in conjunction with the University of Oxford, have discovered a new quality to perovskites that could help engineer a better solar cell.

The researchers have shown in their research that, contrast to popular belief, the perovskites are uniform in composition. The materials actually contain flaws that can be engineered to improve solar devices even further.

“In that short amount of time, the ability of these materials to convert sunlight directly into electricity is approaching that of today’s silicon-based solar cells, rivaling technology that took 50 years to develop,” said Dane deQuilettes, a University of Washington doctoral student. “But we also suspect there is room for improvement.”

(more…)

Engineers developed this one-material battery by sprinkling carbon (red) into each side of a new material (blue) that forms the electrolyte and both electrodes at the ends of the battery.Source: Maryland NanoCenter

Engineers developed this one-material battery by sprinkling carbon (red) into each side of a new material (blue) that forms the electrolyte and both electrodes at the ends of the battery.
Source: Maryland NanoCenter

ECS student member Fudong Han and former member Chunsheng Wang have developed a novel solid state battery comprised of just one material that can both move and store electricity.

This new battery could prove to be revolutionary in the area of solid state batteries due to its incorporation of electrodes and electrolytes into a single material.

“Our battery is 600 microns thick, about the size of a dime, whereas conventional solid state batteries are thin films — forty times thinner. This means that more energy can be stored in our battery,” said Han, the first author of the paper and a graduate student in Wang’s group.

This from the University of Maryland:

The new material consists of a mix of sulfur, germanium, phosphorus and lithium. This compound is used as the ion-moving electrolyte. At each end, the scientists added carbon to this electrolyte to form electrodes that push the ions back and forth through the electrolyte as the battery charges and discharges. Like a little bit more sugar added at each end of a cookie-cream mixture, the carbon merely helps draw the electricity from side to side through the material.

(more…)

Three Atom Thick Transistor

A new study by two ECS published authors, David Muller and Jiwoong Park, has led to an electronic piece that is just three atoms thick.

The researchers have unveiled a process to develop ultra-thin transistors made from TMD, otherwise known as transition metal dichalcogenide. This material is novel in the fact that it possesses properties that make it a perfect fit for solar cells, light detectors, or semiconductors.

Researchers have been examining TMDs for some time now, but have been finding it difficult to get them to work consistently. This new study has discovered the best process yet to manufacture the materials, which could lead to a breakthrough in the future of electronics and possibly bring about an end to Moore’s law.

(more…)

  • Page 2 of 5