‘Smart Skin’ Replicates Sense of Touch

A team has developed a skin that can stretch over the entire prosthesis; and its applications aren't just limited to pressure. It's embedded with ultrathin, single crystalline silicone nanoribbon, which enables an array of sensors.Credit: Kim et al./Nature Communications

The skin is embedded with ultrathin, single crystalline silicone nanoribbon, which enables an array of sensors.
Credit: Kim et al./Nature Communications

We’ve talked about the advancements in prosthetic limbs in the past, but now a group of researchers out of Seoul National University are taking innovation in prosthetics one step further with this new “smart skin.”

Researchers from the Republic of Korea have developed a stretchy synthetic skin embedded with sensors, which will be able to help those with prosthetics regain their sense of touch.

This from “Stretchable silicon nanoribbon electronics for skin prosthesis” in the journal Nature Communications:

This collection of stretchable sensors and actuators facilitate highly localized mechanical and thermal skin-like perception in response to external stimuli, thus providing unique opportunities for emerging classes of prostheses and peripheral nervous system interface technologies.

(more…)

Graphene Applied to Body Armor

The ballistic test shows that graphene is excellent at both absorbing and spreading the energy of an impact.Credit: Jae-Hwang Lee

The ballistic test shows that graphene is excellent at both absorbing and spreading the energy of an impact.
Credit: Jae-Hwang Lee

We’ve been talking a lot about graphene – from its potential in energy storage to its ability to improve and revolutionize personal electronic devices, this material seems to be everywhere. Now, engineers out of the University of Massachusetts believe it could help save lives.

Engineers developed a mock-up of multilayered graphene body armor and tested it in a miniature shooting range. The results suggest that graphene may be able to absorb 10 times the amount of energy that its steel competitor can before failing.

(more…)

Why We Need More Women in Science

There is no doubt that women have made their mark in science. From Marie Curie to Rosalind Franklin – women have made outstanding contributions to innovation, research, and technology. Still, there is a significant gender bias that exists in the field, which affects research outcomes and discovery.

The questions exists: Why are there still so few women in science? How will this affect what we learn from research?

According to an article in National Geographic, women make up half the national workforce and earn more college and graduate degrees than men. Still, the gender gap in science exists – specifically in fields such as engineering.

This from National Geographic:

According to U.S. Census Bureau statistics, women in fields commonly referred to as STEM (science, technology, engineering, mathematics) made up 7 percent of that workforce in 1970, a figure that had jumped to 23 percent by 1990. But the rise essentially stopped there. Two decades later, in 2011, women made up 26 percent of the science workforce.

(more…)

Member Spotlight – Shelley Minteer

ECS's Shelley Minteer has developed a fuel cell that can convert jet fuel to electricity at room temperature without igniting the fuel.Credit: Dan Hixson/University of Utah College of Engineering

ECS’s Shelley Minteer has developed a fuel cell that can convert jet fuel to electricity at room temperature without igniting the fuel.
Credit: Dan Hixson/University of Utah College of Engineering

The Electrochemical Society’s Shelley Minteer and her team of engineers at The University of Utah have developed the first room-temperature fuel cell that uses enzymes to help jet fuel produce electricity without need to ignite the fuel.

The new fuel cells will be able to be used to power portable electronics, off-grid power, and sensors.

The study was published in the American Chemical Society journal ACS Catalysis with Minteer as the senior author.

“The major advance in this research is the ability to use Jet Propellant-8 directly in a fuel cell without having to remove sulfur impurities or operate at very high temperature,” says Minteer. “This work shows that JP-8 and probably others can be used as fuels for low-temperature fuel cells with the right catalysts.”

The standard technique for converting jet fuel to electricity is both difficult, due to the sulfur content, and inefficient, with only 30 percent of the fuel converted to electricity under the best conditions.

This from The University of Utah:

To overcome these constraints, the Utah researchers used JP-8 in an enzymatic fuel cell, which uses JP-8 for fuel and enzymes as catalysts. Enzymes are proteins that can act as catalysts by speeding up chemical reactions. These fuel cells can operate at room temperature and can tolerate sulfur.

Read the full article here.

Minteer is a valued member of ECS and is on the editorial board of the Journal of The Electrochemical Society and ECS Electrochemistry Letters – along with being a past chair of the Physical and Analytical Electrochemistry Division. You can also read her published research in our Digital Library.

Make sure to sign up for our e-Alerts so you don’t miss the newest, cutting-edge research!

The dolphin 'breathalyzer' will analyze the for health problems and aid in wildlife conservation.Credit: American Chemical Society

The dolphin ‘breathalyzer’ will analyze the for health problems and aid in wildlife conservation.
Credit: American Chemical Society

While breath analysis is most commonly known for its ability to detect alcohol consumption, it has the potential to extend far beyond that use. Breath analysis has the ability to diagnose a wide range of human conditions, and is now being utilized to aid the bottlenose dolphin.

Engineers from the University of California, Davis have developed a device for collecting dolphin breath for analysis. Because invasive techniques such as skin biopsies and blood sampling are difficult to perform on wild dolphins, this device will make it easier to check the health of the marine animals, study their biology, and aid in wildlife conservation.

This from UC Davis:

The researchers designed an insulated tube that traps breath exhaled from a dolphin’s blowhole and freezes it. They analyzed samples to create profiles of the mix of metabolites in breath, established baseline profiles of healthy animals and were able to identify changes in the breath of animals affected by disease or other factors. The researchers concluded that breath analysis could be used to diagnose and monitor problems in marine mammals – and, by extension, in ocean health as well.

(more…)

Harvard students test the flow rate from one of the newly installed tap stands.Credit: Christopher Lombardo

Harvard students test the flow rate from one of the newly installed tap stands.
Credit: Christopher Lombardo

A group of students from Harvard have been working to help restore clean water to the rural town of Pinalito in the Dominican Republic. Now, for the first time in a long time, the water in Pinalito is clean again.

This from Harvard Gazette:

For the past 2½ years, students in the Harvard University chapter of Engineers Without Borders have been rehabilitating and improving a potable water system in the rural town in the Dominican Republic. After the most recent visit, the students returned to campus in late August having successfully worked with the community to upgrade the water quality and distribution system.

Read the full article here.

The residents now have clean water – something that wasn’t available prior due to the failed well built by a government contractor. The well installed by the Harvard students can produce 27 gallons a minute, according to Christopher Lombardo – assistant director for undergraduate studies in engineering sciences at the Harvard School of Engineering and Applied Sciences (SEAS).

During their time in Pinalito, the students made sure to integrate the community into the design and building of the well in order to combat skepticism and foster relationships.

Not only does this experience provide the rural town with clean water, but it also shows the students that there are many other perspective they’ll need to consider when they go further in the field of engineering, and they won’t always have access to a state-of-the-art lab.

At ECS, we’re also joining the fight to provide clean water though innovation and research to those in need. We are in Cancun right now working with the Bill & Melinda Gates Foundation to find and fund new research to combat some of the world’s most serious water and sanitation issues.

Stay connected with us to see the grant winners and their solutions to bridge the critical technology gaps in water, sanitation, and hygiene challenges being faced around the world.

Become a NeXXt Scholar Today

The NeXXt Scholars Program was launched by Secretary of State Hillary Rodham Clinton in December 2011.

The New York Academy of Sciences in partnership with the U.S. Department of State and a consortium of 38 women’s colleges launched the NeXXt Scholars Program, now entering its third year, to help engage and advance American women and women from countries with predominantly Muslim populations in pursuit of undergraduate degrees in science, technology, engineering, and mathematics (STEM) academic fields. In order to accomplish this goal, the Academy will provide partnership, mentorship, and networking support for these NeXXt Scholars by way of a STEM Fellow who will serve as a one-to-one mentor.

Applications for 2014 STEM Fellow positions are being accepted until September 20th.

Find more information or submit an application today.

ECS is also proud to provide students with excellent opportunities in electrochemical and solid state science and technology. Network at the Society’s meetings or become a member to receive even greater benefits.

Free the Engineering!

Vijay Ramani

Co-editor of Interface, Vijay Ramani, talks about open access publishing in this letter from the editor.

The following is an article from the latest issue of Interface by co-editor Vijay Ramani.

Late last year, I accepted the invitation to become co-editor of Interface safe in the knowledge that I would not actually be called upon to do anything for the foreseeable future.* Thanks to the outstanding ECS staff and conscientious guest editors and authors, this happy state of affairs has persisted until now. But just as “even the weariest river winds somewhere safe to sea,” so it is that the inevitable passage of time has brought upon a situation wherein actual effort is required on my part, viz. this editorial. The increasingly plaintive entreaties from our admirably patient Director of Publications seeking the contents of this column can no longer, in good conscience, be ignored or fobbed off with feeble excuses.

Read the rest.

Pressure Retarded Osmosis (PRO)

Pressure retarded osmosis (PRO) is a method of producing renewable energy from two streams of a different salinity.
Credit: Jose-Luis Olivares/MIT

When the River Meets the Sea” may very well be a John Denver song circa 1979, but it is also an intersection with the potential to generate a significant amount of power. According to a team of mechanical engineers at MIT, when river water collides with sea water, there exists the potential to harness a significant amount of renewable energy.

This from Phys.org:

The researchers evaluated an emerging method of power generation called pressure retarded osmosis (PRO), in which two streams of different salinity are mixed to produce energy. In principle, a PRO system would take in river water and seawater on either side of a semi-permeable membrane. Through osmosis, water from the less-salty stream would cross the membrane to a pre-pressurized saltier side, creating a flow that can be sent through a turbine to recover power.

Read the full article here.

According to calculations by Leonardo Banchik, a graduate student in MIT’s Department of Mechanical Engineering, a PRO system could potentially power a coastal wastewater-treatment plant by taking in seawater and combining it with treated wastewater to produce renewable energy.

Although more research needs to be done to see in what applications the PRO system is economically viable, Banchik sees the huge potential of this method.

“Say we’re in a place that could really use desalinated water, like California, which is going through a terrible drought,” Banchik says. “They’re building a desalination plant that would sit right at the sea, which would take in seawater and give Californians water to drink. It would also produce a saltier brine, which you could mix with wastewater to produce power.”

Learn more about new devlopments in osmosis via ECS’s Digital Library.

Solar Energy Without Blocking the View

Solar Concentrator

The solar harvesting system uses small organic molecules developed by Lunt and his team to absorb specific nonvisible wavelengths of sunlight.
Credit: Yimu Zhao

A team of researchers at Michigan State University has developed a new type of solar concentrator that can harvest energy when placed over a window without blocking the view.

The new development is called the transparent luminescent solar concentrator and it has the potential to be used on buildings, cell phones, and any other device that has a flat, clear surface.

This from Science Daily:

Research in the production of energy from solar cells placed around luminescent plastic-like materials is not new. These past efforts, however, have yielded poor results – the energy production was inefficient and the materials were highly colored.

Read the full article here.

The transparent luminescent solar concentrator is still in the beginning of its development – yielding a solar conversion efficiency just close to one percent. However, Richard Lunt of MSU’s College of Engineering believes the concentrator will reach efficiencies beyond five percent when fully optimized.

“It opens a lot of area to deploy solar energy in a non-intrusive way,” Lunt said. “It can be used on tall buildings with lots of windows or any kind of mobile device that demands high aesthetic quality like a phone or e-reader. Ultimately we want to make solar harvesting surfaces that you do not even know are there.”

ECS will have a symposium at the upcoming meeting in Cancun dealing with solar fuels and the utilization of solar energy. Find out more about the meeting and sign-up for early bird registration today!

  • Page 5 of 5