Electric VehiclesAs sustainable technologies continue to expand into the marketplace, the demand for better batteries rises. Many researchers in the field are looking toward all-solid-state batteries as a promising venture, citing safety and energy density properties. Now, one company is looking to take that work from the lab to the marketplace.

Electric car maker Fisker has recently filed patents for solid state lithium-ion batteries, stating that mass scale production could begin as soon as 2023. The patent covers novel materials and manufacturing processes that the company plans to use to develop automotive-ready batteries.

Unlike other types of rechargeable batteries that use liquid electrodes and electrolytes, solid state batteries utilize both solid electrodes and solid electrolytes. While liquid electrolytes are efficient in conducting ions, there are certain safety hazards attached (i.e. fires if the battery overheats or is short-circuited). In addition to better safety, solid electrodes could also impact battery cost and energy density, opening up new possibilities for large scale storage applications.

(more…)

Just a few weeks after France vowed to get gasoline and diesel powered cars off the road by 2040, Australia has joined in on the conversation of transportation transformation. According to a statement, Queensland is looking to kick off an electric vehicle revolution with the implementation of an “electric super highway.”

The highway will incorporate 18 towns and cities in Australia. Officials expect the highway to be completed within the next six months, stretching 1,240 miles along the Queensland’s east coast loaded with 18 fast-charging stations that can charge a car in 30 minutes, allowing electric vehicle drivers to make it from the state’s southern border to the far north.

“EVs can provide not only a reduced fuel cost for Queenslanders, but an environmentally-friendly transport option, particularly when charged from renewable energy,” says Environment Minister and Acting Main Roads Minister Steven Miles. “The Queensland Electric Super Highway has the potential to revolutionize the way we travel around Queensland in the future.”

(more…)

By: Amy Myers Jaffe, University of California, Davis and Lewis Fulton, University of California, Davis

Electric VehiclesWhen will cars powered by gas-guzzling internal combustion engines become obsolete? Not as soon as it seems, even with the latest automotive news out of Europe.

First, Volvo announced it would begin to phase out the production of cars that run solely on gasoline or diesel by 2019 by only releasing new models that are electric or plug-in hybrids. Then, France and the U.K. declared they would ban sales of gas and diesel-powered cars by 2040. Underscoring this trend is data from Norway, as electric models amounted to 42 percent of Norwegian new car sales in June.

European demand for oil to propel its passenger vehicles has been falling for years. Many experts expect a sharper decline in the years ahead as the shift toward electric vehicles spreads across the world. And that raises questions about whether surging electric vehicle sales will ultimately cause the global oil market, which has grown on average by 1 to 2 percent a year for decades and now totals 96 million barrels per day, to decline after hitting a ceiling.

Energy experts call this concept “peak oil demand.” We are debating when and if this will occur.

(more…)

Electric vehicleAround the world, the transportation sector is evolving. Globally, electric vehicle (EV) sales have more than doubled, showing a 72 percent increase in 2015, followed by 41 percent global increase in EV sales in 2016. Now, France is committing to a greener transportation sector by vowing to end the sale of gasoline and diesel vehicles by 2040, further pledging to become a carbon neutral country by 2050.

Currently, 95.2 percent of new car fleets in France are represented by gasoline and diesel vehicles. According to France’s Ecology Minister Nicolas Hulot, initiatives by automakers such as Volvo to go all electric in the coming years will help France start to phase out gasoline and diesel vehicles.

In order to become carbon neutral by 2050, France will also need to devote energy to ending the use of fossil fuels across the board, which includes ending hydrocarbon licenses in the country and stopping coal production by 2022.

While France’s goals are admirable, organizations such as Greenpeace believe that the measure falls short in terms of concrete measures.

“We are left wanting, on how these objectives will be achieved,” Greenpeace campaigner Cyrille Cormier said in a statement. “The goal to end the sale of gasoline and diesel vehicles by 2040 sends out a strong signal, but we would really like to know what are the first steps achieve this, and how to make this ambition something other than a disappointment.”

Electric VehiclesUsing energy stored in the batteries of electric vehicles to power large buildings not only provides electricity for the building, but also increases the lifespan of the vehicle batteries, new research shows.

Researchers have demonstrated that vehicle-to-grid (V2G) technology can take enough energy from idle electric vehicle (EV) batteries to be pumped into the grid and power buildings—without damaging the batteries.

This new research into the potentials of V2G shows that it could actually improve vehicle battery life by around ten percent over a year.

For two years, Kotub Uddin, a senior research fellow at the University of Warwick’s Warwick Manufacturing Group, and his team analyzed some of the world’s most advanced lithium ion batteries used in commercially available EVs—and created one of the most accurate battery degradation models existing in the public domain—to predict battery capacity and power fade over time, under various aging acceleration factors—including temperature, state of charge, current, and depth of discharge.

(more…)

Scientists have found a way to wirelessly transmit electricity to a nearby moving object.

The method may have applications in transportation, medical devices, and more. If electric cars could recharge while driving down a highway, for example, it would virtually eliminate concerns about their range and lower their cost, perhaps making electricity the standard fuel for vehicles.

“In addition to advancing the wireless charging of vehicles and personal devices like cellphones, our new technology may untether robotics in manufacturing, which also are on the move,” says Shanhui Fan, a professor of electrical engineering at Stanford University and senior author of the study.

“We still need to significantly increase the amount of electricity being transferred to charge electric cars, but we may not need to push the distance too much more,” he says.

(more…)

BatteryOne of the keys to developing a successful electric vehicle relies on energy storage technology. For an EV to be successful in the marketplace, it must be able to travel longer distances (i.e. over 300 miles on a single charge).

A team of researchers from Georgia Institute of Technology, including ECS fellow Meilin Liu, has recently created a nanofiber that they believe could enable the next generation of rechargeable batteries, and with it, EVs. The recently published research describes the team’s development of double perovskite nanofibers that can be used as highly efficient catalysts in fast oxygen evolution reactions. Improvements in this key process could open new possibilities for metal-air batteries.

“Metal-air batteries, such as those that could power electric vehicles in the future, are able to store a lot of energy in a much smaller space than current batteries,” Liu says. “The problem is that the batteries lack a cost-efficient catalyst to improve their efficiency. This new catalyst will improve that process.”

(more…)

By: Jonathan Coopersmith, Texas A&M University

EVImagine if you could gas up your GM car only at GM gas stations. Or if you had to find a gas station servicing cars made from 2005 to 2012 to fill up your 2011 vehicle. It would be inconvenient and frustrating, right? This is the problem electric vehicle owners face every day when trying to recharge their cars. The industry’s failure, so far, to create a universal charging system demonstrates why setting standards is so important – and so difficult.

When done right, standards can both be invisible and make our lives immeasurably easier and simpler. Any brand of toaster can plug into any electric outlet. Pulling up to a gas station, you can be confident that the pump’s filler gun will fit into your car’s fuel tank opening. When there are competing standards, users become afraid of choosing an obsolete or “losing” technology.

Most standards, like electrical plugs, are so simple we don’t even really notice them. And yet the stakes are high: Poor standards won’t be widely adopted, defeating the purpose of standardization in the first place. Good standards, by contrast, will ensure compatibility among competing firms and evolve as technology advances.

My own research into the history of fax machines illustrates this well, and provides a useful analogy for today’s development of electric cars. In the 1960s and 1970s, two poor standards for faxing resulted in a small market filled with machines that could not communicate with each other. In 1980, however, a new standard sparked two decades of rapid growth grounded in compatible machines built by competing manufacturers who battled for a share of an increasing market. Consumers benefited from better fax machines that seamlessly worked with each other, vastly expanding their utility.

(more…)

There’s a major player in the autonomous, electric car industry that may just outpace transportation mogul Tesla. Faraday Future, an American start-up focused on developing intelligent electric vehicles, just unveiled its first self-driving supercar called the FF91.

Faraday Future states that the vehicle’s 130 kWh battery delivers a range of 378 miles on a single charge. Additionally, 10 cameras, 13 radar sensors, and 12 ultrasonic sensors help power the vehicle’s autonomous abilities.

But Nick Samson, Faraday Future’s senior vice president of engineering, says that the FF91 is “more than just a car,” rather an “intelligent entity.”

In addition to the batter and self-driving tech, the FF91 boasts an infotainment system that allows passengers to watch TV based on your preferences, which are known by the car due to an online profile.

EV Charging StationCurrently, electric vehicles depend on a complex interplay of batteries and supercapacitors to get you where you’re going. But a recently published paper, co-authored by ECS Fellow Hector Abruna, details the development of a new material that can take away some of the complexity of EVs.

“Our material combines the best of both worlds — the ability to store large amounts of electrical energy or charge, like a battery, and the ability to charge and discharge rapidly, like a supercapacitor,” says William Dichtel, lead author of the study.

This from Northwestern University:

[The research team] combined a COF — a strong, stiff polymer with an abundance of tiny pores suitable for storing energy — with a very conductive material to create the first modified redox-active COF that closes the gap with other older porous carbon-based electrodes.

(more…)

  • Page 1 of 2
    • 1
    • 2