ECS Ride-and-Learn

Want to see Electrochemistry in Action and ride in one of the world’s first commercial fuel cell cars while at the 232nd ECS Meeting? Join us for a Ride-and Learn on Monday, October 2 from 12:00 pm to 2:00 pm in front of the main entrance of the Gaylord National Resort and Convention Center. This Ride-and-Learn is open to all ECS meeting attendees. First come, first serve.

Fuel cell cars run on hydrogen fuel, use a fuel cell that converts hydrogen into the electricity that powers the car’s electric motor and emit only water from the tailpipe. For the first time ever, they are commercially available, have started hitting the streets and the hydrogen stations to fuel them are up and running in select U.S. regions.

This Ride-and-Learn is organized by the U.S. Department of Energy’s Fuel Cell Technologies Office (FCTO) in the Office of Energy Efficiency and Renewable Energy. FCTO has funded early-stage hydrogen and fuel cells research and development enabling a 60 percent reduction in fuel cell cost, a fourfold increase in fuel cell durability and an 80 percent cut in the cost of electrolyzers over the past decade. You can learn more about this exciting technology and the work FCTO funds to enable hydrogen and fuel cell technological breakthroughs at energy.gov/fuelcells.

Following the 232nd ECS Meeting, the third annual National Hydrogen and Fuel Cell Day will take place on October 8, 2017, aimed at raising awareness and celebrating advances in fuel cell and hydrogen technologies. The U.S. Department of Energy, Fuel Cell and Hydrogen and Energy Association , its members, industry organizations, and state and federal governments will be commemorating National Hydrogen and Fuel Cell day with a variety of activities and events across the country.

(more…)

Image:  Kathy F. Atkinson, University of Delaware

Image: Kathy F. Atkinson, University of Delaware

Fuel cells are an important technology for the nation’s energy portfolio, offering a cleaner, more efficient alternative to combustion engines that utilize fossil fuels.

However, a team of researchers from the University of Delaware point out that a major challenge in the commercialization of fuel cells is the durability of the membrane, which tends to develop cracks that short is life during operation.

A new article published in the Journal of The Electrochemical Society, “Self-Healing Composite Membrane for Proton Electrolyte Membrane Fuel Cell Applications,” aims to address the fuel cell membrane issue by developing a self-healing membrane, incorporating microcapsules prefilled with a Nafion solution.

“The microcapsules are designed to rupture when they encounter defects in the membrane and then release the prefilled Nafion solution to heal the defects in place,” says Liang Wang, past ECS member and co-author of the study.

Testing showed that the newly developed membrane and its self-healing functionality could greatly extend its useful life.

Microbial fuel cell

Image: University illustration / Michael Osadciw

Many researchers agree that microbial fuel cells have a range of promising applications. However, before they can reach widespread applications, researchers need to make them both cheaper and more efficient.

A team of researchers from the University of Rochester believe they’re making progress on that front with the development of a paper electrode.

Microbial fuel cells drive electric current by using bacteria and mirroring bacterial interactions found in nature. In the 21st century, microbial fuel cells found new application in their ability to treat wastewater and harvest energy through anaerobic digestion.

This from University of Rochester:

Until now, most electrodes used in wastewater have consisted of metal (which rapidly corrodes) or carbon felt. While the latter is the less expensive alternative, carbon felt is porous and prone to clogging. Their solution was to replace the carbon felt with paper coated with carbon paste, which is a simple mixture of graphite and mineral oil. The carbon paste-paper electrode is not only cost-effective and easy to prepare; it also outperforms carbon felt.

(more…)

After Toyota’s 2015 release of the first mass-market fuel cell car, the Japanese automaker is gearing up to release the second generation of its fuel cell vehicle in 2019.

The initial version of the Mirai, which was heralded by Toyota as the ultimate “green car,” could travel up to 300 miles on a single tank of hydrogen and refuel in less than five minutes. The starting price for the vehicle is currently $57,460.

Toyota’s new version of the Mirai promises to be more affordable than its predecessor, potentially making the clean energy vehicle well-received among consumers.

(more…)

From Trash to (Energy) Treasure

Image: Liz West

Image: Liz West

It doesn’t matter how green you thumb is, there will always be fruits and vegetables in your garden that just don’t quite make it. The same concept goes for commercial farms, where farmers accumulate tons of fruit and vegetable waste every year.

In fact, the state of Florida alone produces an estimated 369,000 tons of waste from tomatoes each year. But what if you could turn that waste into electricity?

That’s exactly what one team comprised of researchers from South Dakota School of Mines & Technology, Princeton University, and Florida Gulf Coast University are doing.

In order to produce the electricity, the team developed a microbial electrochemical cell that can use tomato waste to generate electric current.

“We have found that spoiled and damaged tomatoes left over from harvest can be a particularly powerful source of energy when used in a biological or microbial electrochemical cell,” says Namita Shrestha, a graduate student working on the project.

This from Tree Hugger:

The bacteria in the fuel cell trigger an oxidation process that releases electrons which are captured by the fuel cell and become a source of electricity. The tomatoes have proven to be a potent energy source. The natural lycopene in the tomatoes acts as a mediator to encourage electricity generation and the researchers say that while waste material usually performs poorly compared to pure chemicals in fuel cells, the waste tomatoes perform just as well or better.

Read the full article.

While their first trial resulted in just 0.3 watts of electricity per 10 milligrams of tomato waste, the researchers believe that more trials will result in improved electricity generation.

Uphill Battle for Electric Cars

With plunging oil prices, it is proving to be more difficult than ever to entice buyers into purchasing an electric vehicle. While the low oil prices may be good for consumers’ gas tanks, the transportation sector continues to account for 27 percent of the United States’ greenhouse gas emissions.

The question then arises of how electric car manufacturers can steer folks back toward electric vehicles and away from gas-guzzling cars?

(MORE: Read Interface: PV, EV, and Your Home)

Impact of falling oil prices

“It definitely makes the transition to sustainable energy more difficult,” said Elon Musk, Tesla CEO, at a business conference in Hong Kong about the impact of the free-falling oil prices.

Tesla rose to prominence in 2003 when oil prices soared, making electric vehicles all the more tempting. With oil prices continually on the decline, it’s now up to companies like Tesla to compel buyers and stress the importance of transitioning toward cleaner vehicles.

New features for electric cars

For companies like Tesla, that means developing things like autonomous cars with “summon” features – allowing the user to call their car just like a pet. Even aesthetic aspects have become more important, with Tesla focusing on futuristic designs.

“What we’re aspiring to do is to make the cars so compelling that even with lower gas prices, it’s still the car you want to buy,” Musk said.

(more…)

Converting Wastewater to Electricity

The new anode can transfer electrolytes from bacteria in wastewater to a microbial fuel cell.Image: Science Advances

The new anode can transfer electrolytes from bacteria in wastewater to a microbial fuel cell.
Image: Science Advances

With 783 million people world-wide lacking access to clean drinking water and more than 35 percent of the world’s population without access to improved sanitation facilities, researchers are pursuing new ways to clean wastewater that is both effective and energy efficient.

An interdisciplinary team from multiple institutions in China has developed a new freestanding anode that can take harmful electrolytes form bacteria in wastewater and transfer them to a microbial fuel cell. This new process opens the door to effectively cleaning wastewater while converting waste to electricity.

The treatment of wastewater is an essential, yet energy intensive, process. While scientists have been exploring new ways to treat wastewater, none of the option has been very energy efficient.

Many current wastewater treatment plants function through fermentation and the burning of methane. The research team from China opts for an alternative method, where they create sewage-based fuel cells that pull the bacterial electrolytes and create electricity.

(more…)

Fuel Cell Research Shows Promising Potential

When it comes to alternative energy solutions, many researchers are looking to fuel cells as a promising solution. With high theoretical efficiency levels and their environmentally friendly qualities, fuel cells could be an answer to both the energy crisis and climate issues. However, researchers are still looking at how to build a fuel cell so that it is not only efficient, but also cost effective.


Sadia Kabir, ECS student member and PhD student at the University of New Mexico, recently published a paper in the Journal of The Electrochemical Society detailing her novel work on graphene-supported catalysts for fuel cells. Kabir is moving from theory to proof with her new research, showcasing an efficient and economically viable fuel cell.

The research was compiled by an interdisciplinary team with representatives from the University of New Mexico, University of Portiers, and Franunhofer Institute for Chemical Technology.

(more…)

Key Development in Hydrogen Fuel Cell Vehicles

Hydrogen fuel cell vehicles have the potential to revolutionize the transportation system. From aiding the fight against climate change through clean emissions to reducing dependency on fossil fuels, hydrogen could potential help power the future and change mobility. Automakers believe that by 2020, there will be tens of thousands of hydrogen fuel cell vehicles on the road. In order to do this, we’re looking towards scientists to make innovation developments leading toward cheaper and more efficient technologies.

Creating a Hydrogen Fuel Cell Vehicle

Shawn Litster, ECS member and associate professor at Carnegie Mellon University, is doing just that. Lister, along with ECS student member William Epting, is focusing his attention on energy technologies that utilize electrochemical devices to further research in the development of the near-perfect fuel cell vehicle.

(Check out a past meeting abstract by the two on fuel cell electrode analysis.)

“We’re looking for ways to minimize the impact of transportation on society and the environment,” said Litster.


Litster and his team have discovered that one of the reasons for the high cost of development for hydrogen fuel cell vehicles is the nanoscale polymer films. While these films offer a host of positive qualities, they require expensive platinum to operate properly.

(more…)

Real Interface in Conventional SOFC

[Click to enlarge]

[Click to enlarge]

Photos and text by Shu-Sheng Liu.

Here is our image obtained by STEM. It was published recently in the Journal of The Electrochemical Society, 162 (2015) F750-F754. It was also presented in Glasgow conference.

It is a stable high-index Ni-YSZ interface of a conventional solid oxide fuel cell.

Our study is the first attempt to analyze the real interface in conventional SOFC.

  • Page 1 of 2
    • 1
    • 2