Energy on This Old House

Ask This Old HouseMy DVR told me to watch this and it was right.

I love This Old House and Ask This Old House. They did a 30 minute home energy special this past week that, whether the show producers knew it or not, shows off electrochemistry and solid state science in the most practical terms.

Richard and Kevin take a trip to Germany to discover how the country has become a world leader in energy efficiency. They find answers in the mechanical rooms of a home and a bed and breakfast. Plus, Kevin and Ross head to Texas to install a residential wind turbine in Texas.

Dinia, who is ECS's graphic designer, helping register attendees at the 228th ECS Meeting

Dinia, who is ECS’s graphic designer, helping register attendees at the 228th ECS Meeting

I should have guessed Germany would be the focus for energy after attending the 228th ECS Meeting in Phoenix a couple of weeks ago. For the first time we brought along one of our staff members, Dinia, who is German. It seemed like she was talking to every other attendee in her native language. I had no idea how many German speakers we had at our meetings.

The wind turbine part of the show from Texas is equally interesting and equally electrochemical.

You’ll be hearing a lot more about energy and electrochemistry/solid state science. The Electrochemical Energy Summit was part of the 228th ECS Meeting. We interviewed seven major players in the alternative energy field in between their talks. They made the point repeatedly that electrochemistry is at the forefront of energy production and the sustainability of our planet. There is a video in the works on the topic.

Watch the energy episode of Ask This Old House.

Gerischer's immense contributions continue to leave an indelible mark, not only in electrochemistry, but also in physical chemistry and materials chemistry.

Gerischer’s immense contributions continue to leave an indelible mark, not only in electrochemistry, but also in physical chemistry and materials chemistry.

An article by Adam Heller, Dieter Kolb, and Krishnan Rajeshwar in the Fall 2010 issue of Interface.

Heinz Gerischer was born on March 31, 1919 in Wittenberg, Germany. He studied chemistry at the University of Leipzig between 1937 and 1944 with a two-year interruption because of military service. In 1942, he was expelled from the German Army because his mother was born Jewish; he was thus found “undeserving to have a part in the great victories of the German Army.” The war years were difficult for Gerischer and his mother committed suicide on the eve of her 65th birthday, in 1943. His only sister, Ruth (born in 1913), lived underground after escaping from a Gestapo prison and was subsequently killed in an air raid in 1944.

In Leipzig, Gerischer joined the group of Karl Friedrich Bonhoeffer, a member of a distinguished family, members of whom were persecuted and murdered because of opposition to Nazi ideology. Bonhoeffer descended from an illustrious chemical lineage of Wilhelm Ostwald (1853-1932) and Walther Hermann Nernst (1864-1941), and kindled Gerischer’s interest in electrochemistry, supervising his doctoral work on periodic (oscillating) reactions on electrode surfaces, completed in 1946. He followed Bonhoeffer to Berlin where his PhD supervisor had accepted the directorship of the Institute of Physical Chemistry at the Humboldt University, and also became the department head at the Kaiser Wilhelm Institute for Physical Chemistry in Berlin-Dahlem (later the Fritz Haber Institute). Gerischer himself was appointed as an “Assistent.” Many years later, Gerischer would return to this distinguished institution as its director. With the Berlin Blockade and the prevailing economic conditions the post-war research was carried out under extremely difficult conditions.

Read the rest.

Michael Gordin discuses the universal language of science and the issue of pressure put on scientists to publish new discoveries in English.Credit: Frank Wojciechowski

Michael Gordin discusses the universal language of science and the demand for scientists to publish new discoveries in English.
Credit: Frank Wojciechowski

The words “permafrost,” “oxygen,” and “hydrogen” may look like the language of science, but these words really have Russian, Greek and French origins. So how is it that English has become the universal language of science? That is the question Michael Gordin, professor the history of science at Princeton, sets out to answer in his interview with PRI.

“If you look around the world in 1900, and someone told you, ‘Guess what the universal language of science will be in the year 2000?’ You would first of all laugh at them because it was obvious that no one language would be the language of science, but a mixture of French, German and English would be the right answer,” Gordin said in his interview.

Gordin goes on to describe how German – the dominant language of science – collapsed during WWI when a boycott was organized against scientists in Germany and Austria, prohibiting them from attending conferences or publishing in Western European journals. Pair this with the anti-German hysteria taking place in the United States and the rise of American scientific establishments, and you being to see how English started to take over as the universal language of science.

“And you have a set of people who don’t speak foreign languages,” said Gordin, “They’re comfortable in English, they read English, they can get by in English because the most exciting stuff in their mind is happening in English. So you end up with a very American-centric, and therefore very English-centric community of science after World War II.”

Here at ECS, due to our vast number of international members, we know science doesn’t conform to a specific mold or language. Through open access (OA) publication, we hope to break this rigidity and focus on the more important issue – the free dissemination of scientific research for the benefit of all. Find out more about ECS’ bold move toward open access publication and publish your paper as OA today.

Listen to Gordin’s full interview below.