GraphenePillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, report engineers.

Materials scientist Rouzbeh Shahsavari of Rice University and alumnus Navid Sakhavand first built atom-level computer models of pillared graphene—sheets of graphene connected by covalently bonded carbon nanotubes—to discover their strength and electrical properties as well as their thermal conductivity.

In a new study, they found that manipulating the joints between the nanotubes and graphene has a significant impact on the material’s ability to direct heat. That could be important as electronic devices shrink and require more sophisticated heat sinks.

(more…)

GrapheneScientists have learned how to tame the unruly electrons in graphene.

Graphene is a nano-thin layer of the carbon-based graphite in pencils. It is far stronger than steel and a great conductor. But when electrons move through it, they do so in straight lines and their high velocity does not change. “If they hit a barrier, they can’t turn back, so they have to go through it,” says Eva Y. Andrei, professor in the Rutgers University-New Brunswick department of physics and astronomy and the study’s senior author.

“People have been looking at how to control or tame these electrons.”

Graphene is a better conductor than copper and is very promising for electronic devices.

The new research “shows we can electrically control the electrons in graphene,” says Andrei. “In the past, we couldn’t do it. This is the reason people thought that one could not make devices like transistors that require switching with graphene, because their electrons run wild.”

(more…)

GrapheneScientists have turned wood into an electrical conductor by making its surface graphene.

Chemist James Tour of Rice University and his colleagues used a laser to blacken a thin film pattern onto a block of pine. The pattern is laser-induced graphene (LIG), a form of the atom-thin carbon material discovered at Rice in 2014.

“It’s a union of the archaic with the newest nanomaterial into a single composite structure,” Tour says.

Previous iterations of LIG were made by heating the surface of a sheet of polyimide, an inexpensive plastic, with a laser. Rather than a flat sheet of hexagonal carbon atoms, LIG is a foam of graphene sheets with one edge attached to the underlying surface and chemically active edges exposed to the air.

Not just any polyimide would produce LIG, and some woods work better than others, Tour says. The research team tried birch and oak, but found that pine’s cross-linked lignocellulose structure made it better for the production of high-quality graphene than woods with a lower lignin content. Lignin is the complex organic polymer that forms rigid cell walls in wood.

(more…)

GrapheneScientists have created a durable catalyst for high-performance fuel cells by attaching single ruthenium atoms to graphene.

Catalysts that drive the oxygen reduction reaction that lets fuel cells turn chemical energy into electricity are usually made of platinum, which stands up to the acidic nature of the cell’s charge-carrying electrolyte. But platinum is expensive, and scientists have searched for decades for a suitable replacement.

The ruthenium-graphene combination may fit the bill, says chemist James Tour, a professor of computer science and of materials science and nanoengineering at Rice University, whose lab developed the material. In tests, its performance easily matched that of traditional platinum-based alloys and bested iron and nitrogen-doped graphene, another contender.

“Ruthenium is often a highly active catalyst when fixed between arrays of four nitrogen atoms, yet it is one-tenth the cost of traditional platinum,” Tour says. “And since we are using single atomic sites rather than small particles, there are no buried atoms that cannot react. All the atoms are available for reaction.”

(more…)

GrapheneA quantum probe based on an atomic-sized “color center” in diamonds has let researchers observe the flow of electric currents in graphene.

Made up of a lattice of carbon atoms only one atom thick, graphene is a key material for the electronics of the future. The thin carbon material is stronger than steel and due to its flexibility, transparency, and ability to conduct electricity, holds great promise for use in solar cells, touch panels, and flexible electronics.

No one has been able to see what is happening with electronic currents in graphene, says Lloyd Hollenberg, professor at the University of Melbourne and deputy director of the Centre for Quantum Computation and Communication Technology.

According to Hollenberg, this new technique overcomes significant limitations with existing methods for understanding electric currents in devices based on ultra-thin materials.

(more…)

GrapheneA team of researchers at the University of Manchester – where graphene was first discovered and won the Nobel Prize – created a graphene-oxide membrane for desalination. The newly developed sieve can turn seawater into drinking water, demonstrating graphene’s ability to filter common salts from water, leading to affordable desalination technology.

Prior to this research, graphene-oxide molecules have garnered significant attention from the scientific community, demonstrating their potential to filter our small nanoparticles, organic molecules, and even large salts. However, researchers have not been able to use a graphene-oxide membrane in desalination technologies, which require very small sieves, until this development.

This from the University of Manchester:

Previous research at The University of Manchester found that if immersed in water, graphene-oxide membranes become slightly swollen and smaller salts flow through the membrane along with water, but larger ions or molecules are blocked.

The Manchester-based group have now further developed these graphene membranes and found a strategy to avoid the swelling of the membrane when exposed to water. The pore size in the membrane can be precisely controlled which can sieve common salts out of salty water and make it safe to drink.

(more…)

GrapheneGraphene could offer a new way to cool tiny chips in phones, computers, and other gadgets.

“You can fit graphene, a very thin, two-dimensional material that can be miniaturized, to cool a hot spot that creates heating problems in your chip,” says Eva Y. Andrei, a physics professor at Rutgers University. “This solution doesn’t have moving parts and it’s quite efficient for cooling.”

As electronics get smaller and more powerful, there’s an increasing need to for chip-cooling solutions. Researcher show in a paper published in the Proceedings of the National Academy of Sciences that using graphene combined with a boron nitride crystal substrate creates a very efficient cooling mechanism.

“We’ve achieved a power factor that is about two times higher than in previous thermoelectric coolers,” says Andrei.

The power factor refers to the effectiveness of active cooling. That’s when an electrical current carries heat away, as shown in this study, while passive cooling is when heat diffuses naturally.

(more…)

By: Mike Williams, Rice University

Graphene

Rice University researchers have modeled a nanoscale sandwich, the first in what they hope will become a molecular deli for materials scientists.

Their recipe puts two slices of atom-thick graphene around nanoclusters of magnesium oxide that give the super-strong, conductive material expanded optoelectronic properties.

Rice materials scientist Rouzbeh Shahsavari and his colleagues built computer simulations of the compound and found it would offer features suitable for sensitive molecular sensing, catalysis and bio-imaging. Their work could help researchers design a range of customizable hybrids of two- and three-dimensional structures with encapsulated molecules, Shahsavari said.

The research appears this month in the Royal Society of Chemistry journal Nanoscale.

The scientists were inspired by experiments elsewhere in which various molecules were encapsulated using van der Waals forces to draw components together. The Rice-led study was the first to take a theoretical approach to defining the electronic and optical properties of one of those “made” samples, two-dimensional magnesium oxide in bilayer graphene, Shahsavari said.

“We knew if there was an experiment already performed, we would have a great reference point that would make it easier to verify our computations, thus allowing more reliable expansion of our computational results to identify performance trends beyond the reach of experiments,” Shahsavari said.

(more…)

By: Mike Williams, Rice University

GrapheneA new type of conductive graphene foam is incredibly tough and can be formed into just about any shape and size.

A chunk of the foam, which is reinforced by carbon nanotubes, can support more than 3,000 times its own weight and easily bounce back to its original height.

The Rice University lab of chemist James Tour tested this new “rebar graphene” as a highly porous, conductive electrode in lithium ion capacitors and found it to be mechanically and chemically stable. The results appear in the journal ACS Applied Materials and Interfaces.

Carbon in the form of atom-thin graphene is among the strongest materials known and is highly conductive; multiwalled carbon nanotubes are widely used as conductive reinforcements in metals, polymers and carbon matrix composites. The Tour lab had already used nanotubes to reinforce two-dimensional sheets of graphene. Extending the concept to macroscale materials made sense, says Tour, a professor of computer science and of materials science and nanoengineering.

“We developed graphene foam, but it wasn’t tough enough for the kind of applications we had in mind, so using carbon nanotubes to reinforce it was a natural next step,” Tour adds.

(more…)

Nano-chimney to Cool Circuits

Overheating has emerged as a primary concern in the development of new electronic devices. A new study from Rice University looks to provide a solution to that, offering a strategy to vent heat away from nano-electronics through cone-like chimneys.

By putting these “chimneys” between the graphene and nanotube, the researchers effectively eliminate a barrier that typically blocks heat from escaping.

This from Rice University:

Researchers at Rice University discovered through computer simulations that removing atoms here and there from the two-dimensional graphene base would force a cone to form between the graphene and the nanotube. The geometric properties of the graphene-to-cone and cone-to-nanotube transitions require the same total number of heptagons, but they are more sparsely spaced and leave a clear path of hexagons available for heat to race up the chimney.

(more…)

  • Page 1 of 6