Fitness trackerA new biosensor technology, commonly referred to as a “lab on a chip,” could monitor your health and alert you of exposure to bacteria, viruses, and pollutants.

“This is really important in the context of personalized medicine or personalized health monitoring,” says Mehdi Javanmard, co-author of the recently published work on the development. “Our technology enables true labs on chips. We’re talking about platforms the size of a USB flash drive or something that can be integrated onto an Apple Watch, for example, or a Fitbit.”

This from Rutgers University:

The technology, which involves electronically barcoding microparticles, giving them a bar code that identifies them, could be used to test for health and disease indicators, bacteria and viruses, along with air and other contaminants, says Javanmard, senior author of the study.

In recent decades, research on biomarkers—indicators of health and disease such as proteins or DNA molecules—has revealed the complex nature of the molecular mechanisms behind human disease. That has heightened the importance of testing bodily fluids for numerous biomarkers simultaneously, the study says.

(more…)

Lab-on-a-Chip Changes Clinical Practice

Biomedical engineers are getting closer to perfecting novel lab-on-a-chip technology. The latest breakthrough from Rutgers University shows promising results for significant cost cutbacks on life-saving tests for disorders ranging from HIV to Lyme disease.

This from Rutgers University:

The new device uses miniaturized channels and values to replace “benchtop” assays – tests that require large samples of blood or other fluids and expensive chemicals that lab technicians manually mix in trays of tubes or plastic plates with cup-like depressions.

Read the full article.

Changing Clinical Practice 

The new development builds on previous lab-on-a-chip research, such as the device from Brigham Young University to improve and simplify the speed of detection of prostate cancer and kidney disease. Researchers from Ecole Polytechnique Federale de Lausanne have also propelled this novel research with their lab-on-a-chip device that can make the study of tumor cells significantly more efficient.

(more…)

First Ever Liquid Nanoscale Laser

The laser also has the potential to be used in optical data storage and lithography.Image: Nature Communications

The laser also has the potential to be used in optical data storage and lithography.
Image: Nature Communications

Former ECS member Teri Odom has assisted in the development of the first ever liquid nanoscale laser. This development could lead to some very practical applications, as well as guiding researchers one step closer to developing a “lab on a chip” for medical diagnostics.

The laser is relatively simple to create, cheap to produce, and has the ability to operate at room temperature. Because the device works in real time, users can quickly and simply produce different colors.

This from Science World Report:

The laser’s cavity itself is made up of an array of reflective gold nanoparticles where the light is concentrated around each nanoparticle and then amplified. In contrast to conventional laser cavities, no mirrors are required for the light to bounce back and forth. As the laser color is tuned the nanoparticle cavity stays fixed and does not change.

(more…)

Innovative device detects prostate cancer and kidney disease on the spot.
Credit: Brigham Young University

Scientists from Brigham Young University have developed a remarkably simple device that has the potential to save lives.

The innovative device, created by chemist Adam Woolley and his students, can detect prostate cancer and kidney disease on the spot, all by simply dropping a urine sample into a tiny tube and seeing how far it goes.

This from Brigham Young University:

The tube is lined with DNA sequences that will latch onto disease markers and nothing else. Urine from someone with a clean bill of health would flow freely through the tube (the farther, the better). But even at ultra-low concentrations, the DNA grabs enough markers to slow the flow and signal the presence of disease.

(more…)