Using Silk in Next-Generation Batteries

The integration of silk into the lithium-ion battery allowed the battery to work for over 10,000 cycles with only a nine percent loss in stability.

The integration of silk into the lithium-ion battery allowed the battery to work for over 10,000 cycles with only a nine percent loss in stability.
Image: ACS Nano

The words “lithium-ion” and “battery” have become almost synonymous recently. While the li-ion battery is used in a multitude of applications, it still does not have a long life without a recharge.

Now, researchers have developed an environmentally friendly way to boost the performance of the li-ion battery by focusing on a material derived from silk.

In the li-ion battery, carbon is the key component for storage. In most situations, graphite takes that role – but it has limited energy capacity. In order to improve the performance of the li-ion battery, researchers looked to replace graphite with a material developed using a sustainable source.

(more…)

Old Battery Type to Compete with Li-ion

When it comes to battery research and technology, people are constantly looking toward the lithium-ion battery to see the next big breakthrough. However, researchers at the chemical company BASF are showcasing and older battery type as a strong competitor against the li-ion.

BASF researchers are taking the nickel-metal hydride battery (NiMH) and giving it a boost to lead to cheaper electric cars. The assumption for electric car makers it that improvements in the lithium-ion battery will make cars cheaper and extend their driving range. While that may be true, the NiMH may also be able to do this with a little improvement.

The chemical company has already been able to double the amount of energy these old battery types can store, thus making them comparable to the lithium-ion. Researchers also state that there is still much room for improvement – with the potential to increase energy storage by an additional eight times.

Further, the batteries are set to cost roughly half as much as the cheapest lithium-ion battery.

(more…)

Paper-like Material to Boost Li-ion Batteries

The newly developed silicon nanofiber structure allow the battery to be cycled hundreds of times without significant degradation.Image: Nature Scientific Reports

The newly developed silicon nanofiber structure allows the battery to be cycled hundreds of times without significant degradation.
Image: Nature Scientific Reports

Electric cars and personal electronics may get the battery boost they need with this new development in lithium-ion batteries.

Researchers from the University of California, Riverside have created silicon nanofibers that are 100 times thinner than human hair, which will provide the potential to boost the amount of energy that can be delivered per unit weight of the batteries.

The research has been detailed in the paper “Towards Scalable Binderless Electrodes: Carbon Coated Silicon Nanofiber Paper via Mg Reduction of Electrospun SiO₂ Nanofibers.”

This from University of California, Riverside:

The nanofibers were produced using a technique known as electrospinning, whereby 20,000 to 40,000 volts are applied between a rotating drum and a nozzle, which emits a solution composed mainly of tetraethyl orthosilicate (TEOS), a chemical compound frequently used in the semiconductor industry. The nanofibers are then exposed to magnesium vapor to produce the sponge-like silicon fiber structure.

(more…)

Goodenough’s Big Idea for the Li-Ion Battery

Many of the most influential people of our time are also the most obscure. Take John Goodenough, for example. While he may not be a household name, everyday devices such as laptops and smartphones exist because of his work on lithium-ion batteries.

But even in his 90s, Goodenough isn’t done yet. He’s already invented the lithium-ion’s nervous system, which houses the cobalt-oxide cathode. This is the most important part of every lithium-ion battery, but Goodenough isn’t satisfied with this major scientific feat. Now, he’s looking to go one step further.

This from Quartz:

Today, at 92, Goodenough still goes to his smallish office every day at the University of Texas at Austin. That, he says, is because he’s not finished. Thirty-five years after his blockbuster, the electric car still can’t compete with the internal combustion engine on price. When solar and wind power produce electricity, it must be either used immediately or lost forever—there is no economic stationary battery in which to store the power. Meanwhile, storm clouds are gathering: Oil is again cheap but, like all cyclical commodities, its price will go back up. The climate is warming and becoming generally more turbulent.

Essentially, Goodenough is looking to create a super-battery.

(more…)

Voltage profiles of charge-discharge cycles of the Li/Li3PS4/S battery.Image: Journal of The Electrochemical Society

Voltage profiles of charge-discharge cycles of the Li/Li3PS4/S battery.
Image: Journal of The Electrochemical Society

A team from Japan’s Samsung R&D has worked in collaboration with researchers from the University of Rome to fabricate a novel all solid state Lithium-sulfur battery.

The paper has been recently published in the Journal of The Electrochemical Society. (P.S. It’s Open Access! Read it here.)

The battery’s capacity is around 1,600 mAhg⁻¹, which denotes an initial charge-discharge Coulombic efficiency approaching 99 percent.

Additionally, the battery possesses such beneficial properties as the smooth stripping-deposition of lithium. In contrast to other Li-S cells, the new battery’s activation energy of the charge transfer process is much smaller.

(more…)

Smaller, More Powerful Li-Ion Battery

Researchers around the world are in a scientific race to develop a near-perfect lithium-ion battery, and a startup from the Massachusetts Institute of Technology (MIT) may have just unlocked the secret.

In 2012, Qichao Hu founded SolidEnergy – a startup that grew out of research and academics from MIT. Qichao started with battery technology that he and ECS member Donald Sadoway developed.

Now, the company is claiming to have built a lithium-ion battery that could change battery technology as we know it.

(more…)

Safer, Thinner Lithium Rechargeables

New technology developed by researchers at the University of Michigan has been designed with the intention of preventing fires caused by lithium-ion battery malfunctions.

Researchers are making this possible by creating an advanced barrier between the electrodes in the lithium-ion battery. The barrier is made with nanofibers extracted from Kevlar – the material known for its use in bulletproof vests. The Kevlar nanofibers stifle the growth of metal tendrils that can become unwanted pathways for electrical current.

“Unlike other ultra strong material such as carbon nanotubes, Kevlar is an insulator,” said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Engineering. “This property is perfect for separators that need to prevent shorting between two electrodes.”

Short-circuiting happens in these batteries when holes in the membranes are too big and dendrites poke through to the membrane. They create a path for electrons within the battery, shorting it out.

(more…)

Development in Lithium-Ion Batteries

You can thank “dendrites” when your smartphone battery goes from a solid 40 percent charge to completely dead in a matter of 20 minutes. Thankfully, researchers out of Purdue University are researching these dendrites – otherwise known as the slayer of lithium-ion batteries – and developing something that could greatly improve the li-ion.

Dendrites work to destroy lithium-ion batteries by forming an anode electrode and growing until they affect battery performance – potentially resulting in complete battery failure.

The new study out of Purdue University explores this issue with the intention of creating a safer and longer-lasting lithium-ion battery that could be charged within minutes instead of hours.

(more…)

Member Spotlight – Stephen Harris

X-ray absorption spectra, interpreted using first-principles electronic structure calculations, provide insight into the solvation of the lithium ion in propylene carbonate.Image: Rich Saykally, Berkeley Labs

X-ray absorption spectra, interpreted using first-principles electronic structure calculations, provide insight into the solvation of the lithium ion in propylene carbonate.
Image: Rich Saykally, Berkeley Labs

The Electrochemical Society’s Stephen Harris, along with a team of researchers from  Berkeley Lab, have found a possible avenue to a better electrolyte for lithium-ion batteries.

Harris – an expert on lithium-ion batteries and chemist at Berkeley Lab’s Materials Science Division – believes that he and his team have unveiled something that could lead to applying lithium-ion batteries to large-scale energy storage.

Researchers around the world know that in order for lithium-ion batteries to store electrical energy for the gird or power electric cars, they must be improved. The team at Berkeley decided to take on this challenge and found surprising results in the first X-ray absorption spectroscopy study of a model lithium electrode, which has provided a better understanding of the liquid electrolyte.

Previous simulations have predicted a tetrahedral solvation structure for the lithium-ion electrolyte, but the new study yields different results.

(more…)

Researchers at Nanyang Technological University have developed ultra-fast charging batteries that last 20 years.Credit: Nanyang Technological University

Researchers at Nanyang Technological University have developed ultra-fast charging batteries that last 20 years.
Credit: Nanyang Technological University

If you’re tired of spending more time charging your phone than actually using it, a team of researchers out of Singapore have some good news for you. The group from Nanyang Technological University (NTU) have developed an ultra-fast charging battery – so fast that it can be recharged up to 70 percent in only two minutes.

When comparing this new discovery to the already existing lithium-ion batteries, the new generation has a lifespan of over 20 years – approximately 10 times more than the current lithium-ion battery. Further, each of the existing li-ion’s cycles takes two to four hours to charge, which is significantly more than the new generation’s two minute charge time.

The development will be of particular benefit to the industry of electric vehicles, where people are often put off by the long recharge times and limited battery life. The researchers at NTU believe that drivers of electric vehicles could save tens of thousands on battery replacement costs and will be able to charge their cars in just ten minutes, all in thanks to the new ultra-fast charging battery.

This from NTU:

In the new NTU-developed battery, the traditional graphite used for the anode (negative pole) in lithium-ion batteries is replaced with a new gel material made from titanium dioxide. Titanium dioxide is an abundant, cheap and safe material found in soil. It is commonly used as a food additive or in sunscreen lotions to absorb harmful ultraviolet rays. Naturally found in spherical shape, the NTU team has found a way to transform the titanium dioxide into tiny nanotubes, which is a thousand times thinner than the diameter of a human hair. This speeds up the chemical reactions taking place in the new battery, allowing for super-fast charging.

Read the full article here.

If you’re interested in battery research, take a look at what our Battery Division has to offer.

You can also explore the vast amount of research ECS carries on the technological and scientific breakthroughs in the field of battery by browsing through our digital library or taking a look at this past issue of Interface.

  • Page 4 of 5