New research out of the University of California, Riverside reveals a transparent, self-healing, highly stretchable material that can be electrically activated to power artificial muscles or improve batteries and electronic devices.

The researchers behind the development believe that this new material could be used to extend the lifetime of lithium-ion batteries in electric vehicles, improve medical and environmental biosensors, and even allow robots to self-heal after mechanical failure.

“Creating a material with all these properties has been a puzzle for years,” says Chao Wang, co-author of the recently published research. “We did that and now are just beginning to explore the applications.”

According to the research, the low-cost material can stretch 50 times its original length and can complete heal in 24 hours after being cut.

Introducing Graphene’s Cousin: Stanene

Stanene-LatticeResearchers made a prediction two years ago that a one-atom thick, tin super material would soon be developed. They believed that this mesh material would yield amazing advances for materials science and be able to conduct electricity with 100 percent efficiency. Now, those same researchers are making good on their prediction with the announcement of the newly developed film called stanene.

Theoretically, potential uses of this material could range from circuit structures to transistors.

Cousin to graphene, this lattice of carbon atoms has similar qualities to a host of other materials, but scientists predict stanene to have a special kick that no other material has yet.

(more…)

New Tire Harnesses Heat to Power Your Car

The tire can generate energy from friction and heat. However, Goodyear has yet to describe the materials to be used.Image: YouTube/Goodyear

The tire can generate energy from friction and heat. However, Goodyear has yet to describe the materials to be used.
Image: YouTube/Goodyear

There’s no question that engineers and manufacturers around the world are moving away from the fuel-based car to the electric vehicle. In order to make these cars possible, they must improve in efficiency. Now, one company is looking outside the box for the answer to electric car sustainability.

Goodyear has just announced the concept of their new tire, which will harvest heat in a variety of ways to help power electric vehicles. The new BH-03 tire is poised to be able to absorb heat while static due to the ultra-black texture of the tire, as well as take advantage of the natural occurrence of friction as the tire moves.

(more…)

Graphene Fights Cancer

Graphene oxide is stable in water and has shown potential in biomedical applications.Image: Oncotarget

Graphene oxide is stable in water and has shown potential in biomedical applications.
Image: Oncotarget

They don’t call it the wonder material for nothing. Since its inception, graphene has shown an amazing array of possibilities – from its potential in renewable resources to its ability to revolutionize electronics. Now, it may even be able to aid in the fight against cancer.

Scientists at the University of Manchester have used graphene to target and neutralize cancer stem cells without harming non-cancerous cells. By taking a modified form of graphene called graphene oxide, the researchers have discovered a quality in the material that acts as an anti-cancer agent that selectively targets cancer stem cells.

The graphene oxide formulations show the potential to treat a broad range of cancers with non-toxic material, including: breast, pancreatic, lung, brain, ovarian, and prostate cancer. The scientist state that if the new treatment were to be combined with existing treatment, it could eventually lead to tumor shrinkage as well as stop the spread of cancer and its reassurance after treatment.

(more…)

What Is Penta-Graphene?

The newly discovered material, called penta-graphene, is a single layer of carbon pentagons that resembles the Cairo tiling, and that appears to be dynamically, thermally and mechanically stable.Image: VCU

The newly discovered material, called penta-graphene, is a single layer of carbon pentagons that resembles the Cairo tiling, and that appears to be dynamically, thermally and mechanically stable.
Image: VCU

Researchers from Virginia Commonwealth University (VCU) in conjunction with universities in China and Japan have discovered a new structural variant of carbon that they are coining “penta-graphene.”

The new material is comprised of a very thin sheet of pure carbon that is especially unique due to its exclusively pentagonal pattern. Thus far, the penta-graphene appears to be dynamically, thermally and mechanically stable.

“The three last important forms of carbon that have been discovered were fullerene, the nanotube and graphene. Each one of them has unique structure. Penta-graphene will belong in that category,” said the paper’s senior author and distinguished professor in the Department of Physics at VCU, Puru Jena in a press release.

The inspiration for this new development came from the pattern of the tiles found paving the streets of Cairo. Professor at Peking University and adjunct professor at VCU, Qian Wang, got the inspiration that inevitably led to penta-graphene while dining in Beijing.

(more…)

Innovation in Spray-on Solar Power

The SparyLD system developed by University of Toronto researchers can spray colloidal quantum dots onto flexible surfaces.Credit: University of Toronto

The SparyLD system developed by University of Toronto researchers can spray colloidal quantum dots onto flexible surfaces.
Credit: University of Toronto

Teams of scientists from around the world have been working on a way to produce spray-on solar cells for some time now. Recently, a team from the University of Toronto Faculty of Applied Science & Engineering has moved to the forefront of the race due to their latest breakthrough involving a new method for spraying solar cells onto flexible surfaces.

The prototype applies colloidal quantum dots via spray. These dots are a type of nanotechnology material that are light-sensitive.

This from Gizmag:

In such spray on solar cells, quantum dots would act as the absorbing photovoltaic material. Because they have a band gap that can be tuned by altering the size of their nanoparticles, they can be made to soak up different parts of the solar spectrum. This could prove particularly valuable if they were to be used in multi-junction solar cells, where dots small and large could sit alongside each other to widen the cells’ energy harvesting potential.

(more…)

Engineers at UC San Diego have developed a nanoparticle-based material for concentrating solar power plants that converts 90% of captured sunlight to heat. With particle sizes ranging from 10 nanometers to 10 micrometers, the multiscale structure traps and absorbs light more efficiently and at temperatures greater than 700 degrees Celsius.Credit: Renkun Chen, Mechanical Engineering Professor, UC San Diego Jacobs School of Engineering

Engineers at UC San Diego have developed a nanoparticle-based material for concentrating solar power plants that converts 90% of captured sunlight to heat.
Credit: Renkun Chen, Mechanical Engineering Professor, UC San Diego Jacobs School of Engineering

An engineering team from the University of California, San Diego, has developed a new nanoparticle-based material for concentrating solar power. The new research, which has been funded by the U.S. Department of Energy’s SunShot program and published in the journal Nano Energy, aims to convert 90 percent of captured light into heat and make solar costs more competitive.

The new material will be able to withstand temperatures greater than 700° Celsius and can survive many years outdoors, despite exposure to humidity.

“We wanted to create a material that absorbs sunlight that doesn’t let any of it escape. We want the black hole of sunlight,” said Sungho Jin, a professor in the department of Mechanical and Aerospace Engineering at UC San Diego Jacobs School of Engineering.

This from the University of California, San Diego:

The novel material features a “multiscale” surface created by using particles of many sizes ranging from 10 nanometers to 10 micrometers. The multiscale structures can trap and absorb light which contributes to the material’s high efficiency when operated at higher temperatures.

Read the full article here.

Head over to our Digital Library and read more research by Sungho Jin, one of the developers of the Silicon boride-coated nanoshell material.