Shortcut to Solar Cells

black-silicon

The newly developed black silicon has the potential to simplify the manufacturing of solar cells due to the ability of the material to more efficiently collect light.
Image: Barron Group

One of the roadblocks in developing a new, clean energy infrastructure lies in our ability to manufacture solar cells with ease and efficiency. Now, researchers from Rice University may have developed a way to simplify this process.

In Andrew Barron’s Rice University lab, he and postdoctoral student Yen-Tien Lu are developing black silicon by employing electrodes as catalysts.

The typical solar cell is made from silicon. By swapping that regular silicon for black silicon, solar cells gain a highly textured surface of nanoscale spikes that allows for a more efficient collection of light.

This from Rice University:

Barron said the metal layer used as a top electrode is usually applied last in solar cell manufacturing. The new method known as contact-assisted chemical etching applies the set of thin gold lines that serve as the electrode earlier in the process, which also eliminates the need to remove used catalyst particles.

(more…)

riceuniversity

Researchers were able to deform the molybdenum disulfide without breaking it.
Image: Nano Letters

Many labs have had their eye on molybdenum disulfide recently due to its promising semiconducting properties. Rice University has also turned its attention toward this 2D material and its interesting sandwich structure. During their studies, the researchers have concluded that under certain conditions, molybdenum disulfide can transform from the consistency of peanut brittle to that of taffy.

According to their research, the scientists state that when exposed to sulfur-infused gas at the right temperature and pressure, molybdenum disulfide takes on the qualities of plastic. This development has the potential to have a high impact in the world of materials science.

The structure of the molybdenum disulfide is similar to a sandwich, with layers of sulfur above and below the molybdenum atoms. When the two sheets join at different angles “defective” arrangements—or dislocations—are formed.

(more…)

One of the world’s strongest natural materials has met one of the strongest artificial materials.

Researchers from the University of Trento, Italy conduced an experiment where they sprayed spiders—producers of naturally strong silk—with carbon-based graphene. Why? Curiosity, of course—the backbone of much great science.

From the experiment, the researchers found that some spiders produced silk that was 3.5 times tougher and stronger than the best naturally produced silk.

(more…)

Mimicking Nature’s Camouflage

In the world of ocean life, the cuttlefish is the king of camouflage. The cuttlefish’s ability to disguise itself, becoming virtually invisible to the naked eye, is an amazing quality that is very difficult to engineer. But with a little inspiration from marine animal, engineers from the University of Nebraska-Lincoln (UNL) have developed a design that mimics patters and textures in a flash.

Within seconds of light exposure, the new structure begins to replicate color and texture of the surrounding environment. While engineers have developed camouflaging materials before, this new design responds to much lower-intensity light and at faster rates than the few predecessors that exist.

“This is a relatively new community of research,” said Li Tan, associate professor of mechanical and materials engineering. “Most of the people (in it) are inspired by the cuttlefish, whose skin changes color and texture, as well.”

(more…)

Ushering in Next-Gen Batteries, Fuel Cells

ECS member

ECS member Shumin Fang was a contributor in a development that could dramatically improve the efficiency of batteries and fuel cells.
Image: Nature Communications

Sometimes the tiniest things could have the biggest impact—especially when it comes to battery technology.

New research from a collaborative team of engineers from Clemson University and the University of South Carolina developed a new material that could boost batteries’ power and help power plants.

ECS student member Shumin Fang of the University of South Carolina was a collaborator on the study. (Take a look at his paper on solid oxide fuel cells.)

The new material acts as a superhighway for ions, allowing for more powerful batteries and boosting the general efficiency of energy conversion.

Because batteries and fuel cells are limited by how fast ions can pass through the electrolyte, engineers must find a mix of electrolyte ingredients that allows for fast movement. This study proposes the answer to this in gadolinium doped ceria.

(more…)

Engineers have developed a way to visualize the optical properties of objects that are thousands of times small than a grain of sand.Source: YouTube/Stanford University

Engineers have developed a way to visualize the optical properties of objects that are thousands of times small than a grain of sand.
Source: YouTube/Stanford University

In order to develop high efficiency solar cells and LEDs, researchers need to see how light interacts with objects on the nanoscale. Unfortunately, light is tricky to visualize in relation to small-scale objects.

Engineers from Stanford University, in collaboration with FOM Institute AMOLF, have developed a next-gen optical method to produce high-resolution, 3D images of nanoscale objects. This allows researchers to visualize the optical properties of objects that are several thousandths the size of a grain of sand.

The teams achieved this by combining two technologies: cathodluminescence and tomography.

(more…)

Plastic + Egg Whites = Bioplastics

After studying the antibacterial properties of bioplastics, researchers found that albumin looks to be the most promising.Image: Cal Powell/UGA

After studying the antibacterial properties of bioplastics, researchers found that albumin looks to be the most promising.
Image: Cal Powell/UGA

Since Leo Baekeland’s invention of Bakelite in 1907, plastic has undergone a lot of transformation. Now, plastic isn’t just used in toys and phones—it also has promising potential in medical applications.

Researchers from the University of Georgia are creating bioplastics from albumin—a protein found in eggs with significant antibacterial properties—to expand plastic’s potential into areas such as wound healing dressing, sutures, catheter tubes, and drug delivery.

“It was found that it had complete inhibition, as in no bacteria would grow on the plastic once applied,” said Alex Jones, a doctoral student at the University of Georgia. “The bacteria wouldn’t be able to live on it.”

The development detailed in this study is critical due the high percentage of hospital-acquired infections.

(more…)

abernathyCammy Abernathy of the University of Florida will be awarded the 2015 Electronics and Photonics Division Award for spearheading research in materials science and engineering through thin-film electronic material innovation and novel research in metal organic chemical vapor deposition.

The prestigious award was established in 1968 to encourage excellence in electronics research and outstanding technical contribution to the field of electronics science.

Dr. Abernathy started her journey through solid state science at MIT in 1980, where she received her degree in materials science and engineering. After furthering her education at Stanford University, Dr. Abernathy continued in the world of academia at the University of Florida. She was appointed the College’s Associate Dean for Academic Affairs in 2004, and currently holds the position of Dean of the College of Engineering.

(more…)

Technique to Make Better Graphene

Another possibility for this novel technique is to introduce intentionally imperfections into graphene's lattice structure to create specific mechanical and electronic attributes.Image: Nature Communications

Another possibility for this novel technique is to introduce intentionally imperfections into graphene’s lattice structure to create specific mechanical and electronic attributes.
Image: Nature Communications

A new development out of Caltech could be the first step to producing commercially feasible graphene-based solar cells and LEDs, large-panel displays, and flexible electronics.

“With this new technique, we can grow large sheets of electronic-grade graphene in much less time and at much lower temperatures,” says Caltech staff scientist David Boyd, who developed the method.

While the amazing potential of graphene is universally accepted among the scientific community, scientists have struggled with achieving the properties of the material on an industrially relevant level. The existing techniques either require temperatures that are too hot, or have intrinsic flaws such as deformation of the materials that compromise strength properties.

(more…)

Predicting Structure Strength

Researchers from Rice University have developed a novel theory that combines strength, stiffness and toughness of composites into a single design map. The dimensionless computer-drawn maps can be applied to anything from nanoscale to buildings.

“That’s the beauty of this approach: It can scale to something very large or very small,” said Rouzbeh Shahsavari, an assistant professor of civil and environmental engineering and of materials science and engineering.

(more…)

  • Page 5 of 6