Calls for Papers: ECS Focus Issues

The editors of the Journal of The Electrochemical Society (JES) and the ECS Journal of Solid State Science and Technology (JSS) are calling for papers for these upcoming focus issues:

JES Focus Issues:

JESElectrochemical Interfaces in Energy Storage Systems
Submission Deadline: June 1, 2015
Focusing on a better understanding of the mechanism of electronic and ionic transport phenomena across electrode-electrolyte interfaces and solid-state interphases in electrochemical energy storage systems. READ MORE.

Redox Flow Batteries – Reversible Fuel Cells
Submission Deadline: August 1, 2015
Focusing on integration of renewable energy sources, like wind and solar into the electrical grid system and how that poses major challenges due to their variable nature and unpredictable availability. READ MORE.


Beyond Open Access

"The unique and longer-term part of our OA plan is to "Free the Science™": to provide all ECS content at no cost to anyone—no fees for authors, readers, and libraries."

“The unique and longer-term part of our OA plan is to “Free the Science™“: to provide all ECS content at no cost to anyone—no fees for authors, readers, and libraries.”

Published in the latest issue of Interface.

The models of scientific communication and publication—which have served us all so well for so long—are no longer fully meeting the spirit of the ECS mission, may not be financially viable, and are hurting the dissemination of the results of scientific research.

The future of Open Access (OA) can change not only scholarly publishing, but can change the nature of scientific communication itself. OA has the power to more “evenly distribute” the advantages currently given to those who can easily access the outputs of scientific research.

ECS has long been concerned with facilitating that access, and our mission has been to disseminate the content from within our technical domain, as broadly as possible, and with as few barriers as possible. To accomplish this, we have maintained a robust, high-quality, high-impact publishing program for over 100 years.

Several years ago, ECS started taking a serious look at the challenges facing us in fulfilling our mission, specifically with respect to our publishing program. The challenges—faced by others in publishing, to a greater or lesser degree—are many and have become increasingly sever.

When a commercial scientific publisher is taking a 35% net profit out of the system, compared with under 2% by ECS, something is not only wrong, but it is clear that some publishers will do anything and everything they can to keep maintaining that level of profit. For many, journal publishing has indeed become a business.

Read the rest.

Modeling Corrosion, Atom by Atom

corrosion_atom_by_atomAn article by Christopher D. Taylor in the latest issue of Interface.

In the late 20th century, computer programs emerged that could solve the fundamental quantum mechanical equations that control the interactions of atoms that give rise to bonding. These tools, first applied to molecules and bulk solid materials, then began to be applied to surfaces and, in the early 21st century, to electrochemical environments. Commercial and open-source programs are now readily available and can be used on both desktop and high-performance computing platforms to solve for the electronic structure of a given configuration of atomic centers (nuclei) and, in so doing, provide the basis for determining a whole host of properties, including electronic and vibrational spectra, electrical moments such as the system dipole, and, most importantly, the energy and forces on the atoms. Other derived properties include the extent to which each atom is charged and bond-orders, although to compute these latter properties one of a variety of methods for dividing up and quantifying the electron density associated with each atom must be selected.

The physics behind these codes is complex, and, challengingly, has no rigorous analytical solution that can be obtained within a finite allotment of time. Thus, the computer programs themselves take advantage of approximations that allow for a feasible solution but, at the same time, constrain the accuracy of the result. Nonetheless, solutions can usually be reliably obtained for model systems representing materials, interfaces, or molecules that do not exceed thousands, and, more realistically, hundreds of atoms. Given that system sizes of hundreds or thousands of atoms amount to no more than the smallest nanoparticle of a substance, the question arises: What can atomistic simulations teach us about corrosion?

Read the rest.

open_access“Comprehensive scientific assessments of our current and potential future climates clearly indicate that climate change is real, largely attributable to emissions from human activities, and potentially a very serious problem.” This is pulled from a public policy statement originally written in 2004 by the American Chemical Society.

Eighteen scientific societies signed on to a similar American Association for the Advancement of Science statement affirming the consensus scientific view on climate change in 2009. According to the California Governor’s Office of Planning and Research, at least 200 worldwide scientific organizations now formally hold the position that climate change has been caused by human action.

The International Panel on Climate Change (IPCC) was set up in 1988 to assess global warming and its impacts. Recently, the panel released a major report, capping its latest assessment, a mega-review of 30,000 climate change studies that establishes with 95-percent certainty that nearly all warming seen since the 1950s is due to human activity. More than 700 of the world’s top climate scientists and 1,729 expert reviewers from more than 70 countries participated in the report process.


Everybody Writes, Nobody Reads

May it be then a reward to all the Interface authors to know that there is a crowd of people who read their work.

May it be then a reward to all the Interface authors to know that there is a crowd of people who read their work.

An article by Interface Co-Editor Petr Vanysek in the latest issue of the publication.

I am happy to report that people read Interface magazine. Just the other day I received a long letter commenting on the usefulness of the topical articles, this one specifically detailing the issue dealing with ionic liquids. The message of the letter was that the reviews in Interface are just as useful as the summary articles in peer-reviewed publications. Another reader, reacting to the side remark I made in my recent editorial about opening a dog kennel, wanted to unload his German shepherds on me. Yet another letter mentioned the Classics column and how nice it was to read recollections about scientists, written by other scientists and colleagues.

Interface does not have an officially gauged impact factor and we do not have a good measure of how well and thoroughly this magazine is read. Still, we like to hear that it is a useful medium for the members, the advertisers, and anybody else who may follow what shows up in our quarterly.


4 New Job Postings in Electrochemistry

Find openings in your area via the ECS job board.

Find openings in your area via the ECS job board.

ECS’s job board keeps you up-to-date with the latest career opportunities in electrochemical and solid state science. Check out the latest openings that have been added to the board.

P.S. Employers can post open positions for free!

Post Doc (NIR/EIS)
Irstea – Montpellier, France
This Post Doc is integrated to a binational project, NEXT. The goal of this project is to investigate the in-line and real-time use of novel holistic sludge descriptors to measure, monitor, model and predict sludge behaviour through sludge treatment processes and use this knowledge for the optimization of design and operation of treatment processes. It will lean on previous works developed by two Irstea teams (on the one hand on organic fluids characterisation based on electrical measurements and rheology and on the other hand on near infrared (NIR) spectroscopy on turbid fluids and soils).


interface_blogIf your organization is conducting research and development in photovoltaics, consider sharing your products and services with ECS scientists and engineers. Interface, the quarterly magazine of ECS, is currently accepting advertisements and classified ads for the spring 2015 issue.

The deadline for all advertisements is February 1st.

Interested organizations should contact Becca Jensen Compton, Development Manager at

corrosion_blog_interfaceAn article by Kenji Amaya, Naoki Yoneya, and Yuki Onishi published in the latest issue of Interface.

Protecting structures from corrosion is one of the most important challenges in engineering. Cathodic protection using sacrificial anodes or impressing current from electrodes is applied to many marine structures. Prediction of the corrosion rates of structures and the design of cathodic protection systems have been traditionally based on past experience with a limited number of empirical formulae.

Recently, application of numerical methods such as the boundary element method (BEM) or finite element method (FEM) to corrosion problems has been studied intensively, and these methods have become powerful tools in the study of corrosion problems.

With the progress in numerical simulations, “Inverse Problems” have received a great deal of attention. The “Inverse Problem” is a research methodology pertaining to identifying unknown information from external or indirect observation utilizing a model of the system.

Read the rest.

Member Spotlight – Ryohei Mori

The aluminum-air battery has the potential to serve as a short-term power source for electric vehicles.Image: Journal of The Electrochemical Society

The aluminum-air battery has the potential to serve as a short-term power source for electric vehicles.
Image: Journal of The Electrochemical Society

A new long-life aluminum-air battery is set to resolve challenges in rechargeable energy storage technology, thanks to ECS member Ryohei Mori.

Mori’s development has yielded a new type of aluminum-air battery, which is rechargeable by refilling with either salt or fresh water.

The research is detailed in an open access article in the Journal of The Electrochemical Society, where Mori explains how he modified the structure of the previous aluminum-air battery to ensure a longer battery life.

Theoretically, metal-air technology can have very high energy densities, which makes it a promising candidate for next-generation batteries that could enable such things as long-range battery-electric vehicles.

However, the long-standing barrier of anode corrosion and byproduct accumulation have halted these batteries from achieving their full potential. Dr. Mori’s recently published paper, “Addition of Ceramic Barriers to Aluminum-Air batteries to Suppress By-product Formation on Electrodes,” details how to combat this issue.


computer_simulation2An article by N.J. Laycock, D.P. Krouse, S.C. Hendy, and D.E. Williams published in the latest issue of Interface.

Stainless steels and other corrosion resistant alloys are generally protected from the environment by ultra-thin layers of surface oxides, also called passive films. Unfortunately, these films are not perfect and their Achilles’ heel is a propensity to catastrophic local breakdown, which leads to rapid corrosion of the metallic substructure. Aside from the safety and environmental hazards associated with these events, the economic impact is enormous.

In the oil and gas and petrochemical industries, it is of course usually possible to select from experience a corrosion-resistant alloy that will perform acceptably in a given service environment. This knowledge is to a large extent captured in industry or company-specific standards, such as Norsok M1.

However, these selections are typically very conservative because the limits tend to be driven by particular incidents or test results, rather than by fundamental understanding. Decision-making can be very challenging, especially in today’s mega-facilities, where the cost of production downtime is often staggeringly large. Thus significant practical benefits could be gained from reliable quantitative models for pitting corrosion of stainless steels. There have been several attempts to develop purely stochastic models of pitting corrosion.

Read the rest.

  • Page 9 of 10