Member Spotlight – Yossef Elabd

Dr. Yossef Elabd, professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation.Image: Texas A&M University

Dr. Yossef Elabd, professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation.
Image: Texas A&M University

The Electrochemical Society’s Yossef A. Elabd is using electrochemical science to work toward global sustainability with his new advancements in fuel cell car technology.

Elabd, an active member of ECS’s Battery Division, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation – focusing not only on the science, but also the environment.

“I just want to drive my car with water vapor coming out the back of it,” Elabd said.

With this new technology and initiatives such as the ECS Toyota Young Investigator Fellowship, Elabd’s statement may become an achievable reality for many people in the near future.

The idea of the fuel cell vehicle is every environmentalist’s dream, but the current issues deal with the sustainability of the vehicle. The current fuel cell car uses a proton exchange membrane (PEM) electrolyte for its platinum-based electrodes.


Toyota is looking to propel the future of the fuel cell vehicle with the recent announcement that they will be granting royalty-free use to thousands of their patents.

“I’m happy and extremely proud to announce to you today that Toyota will grant royalty-free use of all 5,680 of our fuel cell patents, including pending patents,” said Senior Vice President of Toyota’s Automotive Operations, Bob Carter, on January 5 at the Consumer Electronics Show (CES).

The patents are to be used by companies manufacturing and selling fuel cell vehicles. Carter stated that these patents – which are critical to the development and production of fuel cells vehicles – will be available through 2020.


First Hybrid-Electric Airplane (Video)


An aircraft with a parallel hybrid engine – the first ever to be able to recharge its batteries in flight – has been successfully tested in the UK, an important early step towards cleaner, low-carbon air travel.
Credit: University of Cambridge

The United Kingdom is taking an important step towards cleaner, low-carbon air travel with the first successfully tested airplane with a parallel hybrid-electric engine. The novel aircraft is the first of its kind due to the ability to recharge its batteries while in flight.

This development comes out of the University of Cambridge in conjunction with Boeing, where they have worked to successfully develop a parallel hybrid-electric propulsion system for an aircraft that will use up to 30 percent less fuel than a comparable plane with a petrol-only engine.

To create the plane, the researches used the same basic principals as in a hybrid car. The aircraft uses a 4-stroke piston engine and an electric motor/generator. When maximum power is required – i.e. during takeoff – the engine and electric motor work together to power the plane. Once cruise height is reached, the motor switches to generator mode to recharge its batteries.


Turning Footsteps into Electricity


Collecting this energy is enough to power lights and other small devices for minutes at a time from a mere one hundred or so footfalls.
Credit: Pavegen

When we look at the kinetic energy that people produce from things such as footfalls or climbing steps, it just makes sense that we begin to move toward harnessing energy from human activity.

That is the mantra of the company Pavegen – the developer of power-generating systems for pavements, football fields, and even school corridors.

The technology for innovations such as this already exists, with the piezoelectric effect dating back more that 130 years.

Now, we have the ability to place these piezoelectric devices in unlikely places. When Pavegen applied this technology to a football field, they were able to produce up to 7 watts of energy with each step.


Member Spotlight – Telpriore “Greg” Tucker

Tucker, a six year ECS member, aims to develop future transportation that is sustainable and fun to use.Credit: Arizona State University

Tucker aims to develop transportation that is sustainable and fun to use.
Credit: Arizona State University

Hard-work and perseverance have paid off for The Electrochemical Society’s Telpriore “Greg” Tucker. From chemist, to mentor, to entrepreneur—the Arizona State University doctoral graduate aims to make an impact in renewable energy and transportation.

With his new degree in hand, Tucker plans to revisit his business plans for The Southwest Battery Bike Company, which focuses on developing electric bicycles that can provide a more affordable and greener source of transportation.

“I’ve always had an interest in transportation and how to make it more affordable and sustainable for the public,” Tucker says. “Since my degree focuses on batteries for renewable energy purposes, I began to see a lot of applications from my research. Some of the best jobs can spring from your hobby or projects that you enjoy doing.”


The Power of Poo: Britain’s Bio-Bus

The Bio-Bus, nicknamed "the number two," will transport riders between Bath and Bristol.Credit: GENeco

The Bio-Bus, nicknamed “the number two,” will transport riders between Bath and Bristol.
Credit: GENeco

Here at ECS, we love to talk about renewable resources – and we also like talking about poop. And with Britain’s first ‘poo-powered’ bus hitting the roads, we have a perfect excuse to talk about both.

GENeco has developed the new 40-seat Bio-Bus, which is powered by human waste. In technical terms, the bus runs on the biomethane gas that is produced at a sewage treatment works in Avonmouth.

According to BBC, the bus can travel up to 300 km – or 186 miles – on one tank of gas. One tank would be equivalent to the annual waste of five people. Further, the vehicle will emit up to 30 percent less carbon dioxide than conventional diesel vehicles.


  • Page 2 of 2
    • 1
    • 2