Tech Highlights

ECS journalsTech Highlights was prepared by David Enos and Mike Kelly of Sandia National Laboratories, Colm Glynn and David McNulty of University College Cork, Ireland, Zenghe Liu of Verily Life Science, and Donald Pile of Rolled-Ribbon Battery Company. This article was originally published in the fall 2017 issue of Interface. Read the full article.

The Effect of the Fluoroethylene Carbonate Additive in Full Lithium-Ion Cells

In recent years, high voltage cathode materials have attracted a great deal of attention due to the high energy densities that they offer. However, side reactions with conventional electrolytes resulting in electrolyte decomposition need to be overcome to make the use of these materials viable for commercial cells. Consequently, various electrolyte additives have been the subject of much research. A team led by researchers from Uppsala University has investigated the effect of fluoroethylene carbonate (FEC) as an electrolyte additive in full Li-ion cells consisting of a LiNi0.5Mn1.5O4 cathode and a Li4Ti5O12 anode. Read the full paper.

From: B. Aktekin, R. Younesi, W. Zipprich et al., J. Electrochem. Soc., 164, A942 (2017).

(more…)

Tech Highlights

ECS journalsTech Highlights was prepared by David Enos, Mara Schindelholz, and Mike Kelly of Sandia National Laboratories, Colm Glynn and David McNulty of University College Cork, Ireland, and Donald Pile of Rolled-Ribbon Battery Company. This article was originally published in Interface. Read the original article.

Spray Drying-Assisted Synthesis of Li3VO4/C/CNTs Composites for High-Performance Lithium Ion Battery Anodes

Published in the “Focus Issue of Selected Papers from IMLB 2016 with Invited Papers Celebrating 25 Years of Lithium Ion Batteries.” Graphite-based materials continue to be the most commonly used anode materials in commercial Li-ion batteries (LIBs). However, the practical application of graphite anodes in largescale LIBs may be hindered by safety issues arising from Li dendrite formation on the surface of the anode when cycling at fast rates. Read the full paper.

From: Yang Yang, Jiaqi Li, Dingqiong Chen, and Jinbao Zhao, J. Electrochem. Soc., 164, A6001 (2017).

(more…)

Tech Highlights

Tech HighlightsECS journals was prepared by Colm Glynn and David McNulty of University College Cork, Ireland, David Enos of Sandia National Laboratories, Zenghe Liu of Verily Life Science, and Donald Pile of Rolled-Ribbon Battery Company. Each article highlighted here is available free online.


Performance of Three-Dimensional LiMn2O4/Carbon Composite Cathodes Prepared Via Sol-Gel Impregnation

With the ever advancing improvements in electronics and display technologies, it is crucial that Li-ion batteries are able to rise to the challenge of powering next generation consumer electronics. Consequently, the development of electrode materials for Li-ion batteries that are capable of delivering high capacities with stable capacity retention is of the utmost importance. Researchers from the University of Bremen have investigated the fabrication of 3D composite cathodes consisting of LiMn2O4 particles deposited directly onto an electrically conductive matrix of carbon fibres via sol-gel impregnation. The electrochemical performance of the composite cathodes was evaluated as a function of the number of sol impregnation steps. Through systematic galvanostatic cycling, the researchers determined that high capacity cathodes could be obtained from increased filling of the carbon matrix with the LMO sol. A cathode sample after four filling cycles demonstrated a discharge capacity of 132mAh g-1 after 50 cycles, corresponding to ~89% of the theoretical capacity of LiMn2O4.

Additionally, as a proof-of-concept, LMO cathodes were cycled against Lithium Titanate (LTO) anodes in a solid state battery (SSB) setup. The evaluation of these cells offers valuable insight for future SSB applications.

(more…)

Tech Highlights

Check out what’s trending in electrochemical and solid state science and technology! Read some of the most exciting and innovative papers that have been recently published in ECS’s journals.

The articles highlighted below are free! Follow the links to get the full-text version.

Towards Implantable Bio-Supercapacitors: Pseudocapacitance of Ruthenium Oxide Nanoparticles and Nanosheets in Acids, Buffered Solutions, and Bioelectrolyte
Since the early 1990s when ruthenium oxide-based electrode materials were found to have pseudocapacitive properties, they have been extensively investigated as promising supercapacitor electrodes. A best benchmark example is RuO2·nH2O in combination with H2SO4 as the electrolyte, being able to operate with high voltage window, high capacitance and long cycle life. Read the rest.

Influence of the Altered Surface Layer on the Corrosion of AA5083

Aluminum alloys are increasingly replacing heavier materials in transportation, military and other applications, oftentimes in environments demanding of exceptional corrosion performance. In this regard, AA5083 has served as one of the alloys of choice for marine applications. Read the rest.

Advances in 3D Printing of Functional Nanomaterials
The intense and widespread interest in additive manufacturing techniques, including 3D printing, has resulted in an approximately $5 billion industry today with projections for growth to $15-20 billion by 2018. The commercial availability of 3D printing equipment, and the development of flexible additive manufacturing platforms in R&D laboratories, has provided a foundation for researchers to perform fundamental research in the materials science and engineering of polymers, organic materials, ceramics, inks, pastes, and other materials. Read the rest.

(more…)

Tech Highlights

Check out what’s trending in electrochemical and solid state technology! Read some of the most exciting and innovative papers that have been recently published in ECS’s journals.

The articles highlighted below are free! Follow the links to get the full-text version.

Development of Hybrid Electro-Electroless Deposit (HEED) Coatings and Applications
Electrodeposition can be achieved via electroplating, whereby current is applied to the work piece serving as the cathode, or by using an electroless deposition process, wherein the reductant is a co-dissolved species in the plating solution. Researchers in Canada have developed a combined deposition process, termed hybrid electro-electroless deposition (HEED) to deposit two metals. Read the rest.

“Time of Flight” Electrochemistry
Measurement of molecular diffusion coefficients is important in understanding and determining the kinetics of physical and chemical processes. Among the measurement techniques employed are those based on pulsed field gradient nuclear magnetic resonance spectroscopy, field flow fractionation, and electrochemistry. Read the rest.

(more…)

Tech Highlights

Check out what’s trending in electrochemical and solid state technology! Read some of the most exciting and innovative papers that have been recently published in ECS’s journals.

The articles highlighted below are Open Access! Follow the links to get the full-text version.

“Modeling Volume Change due to Intercalation into Porous Electrodes”
Published in the Journal of The Electrochemical Society
Lithium-ion batteries are electrochemical devices whose performance is influenced by transport processes, electrochemical phenomena, mechanical stresses, and structural deformations. Many mathematical models already describe the electrochemical performance of these devices. Some models go further and account for changes in porosity of the composite electrode. Read the rest.

(more…)