By: Jeremy Straub, North Dakota State University

Driverless carIn the wake of car- and truck-based attacks around the world, most recently in New York City, cities are scrambling to protect busy pedestrian areas and popular events. It’s extremely difficult to prevent vehicles from being used as weapons, but technology can help.

Right now, cities are trying to determine where and how to place statues, spike strip nets and other barriers to protect crowds. Police departments are trying to gather better advance intelligence about potential threats, and training officers to respond – while regular people are seeking advice for surviving vehicle attacks.

These solutions aren’t enough: It’s impractical to put up physical barriers everywhere, and all but impossible to prevent would-be attackers from getting a vehicle. As a researcher of technologies for self-driving vehicles, I see that potential solutions already exist, and are built into many vehicles on the road today. There are, however, ethical questions to weigh about who should control the vehicle – the driver behind the wheel or the computer system that perceives potential danger in the human’s actions.

(more…)

Engineers have developed a flexible sensor “skin” that can stretch over any part of a robot’s body or prosthetic to accurately convey information about shear forces and vibration—information critical to grasping and manipulating objects.

If a robot sets out to disable a roadside bomb—or delicately handle an egg while cooking you an omelet—it needs to be able to sense when objects are slipping out of its grasp. Yet, to date, it’s been difficult or impossible for most robotic and prosthetic hands to accurately sense the vibrations and shear forces that occur, for example, when a finger is sliding along a tabletop or when an object begins to fall.

To solve that issue, the bio-inspired robot sensor skin mimics the way a human finger experiences tension and compression as it slides along a surface or distinguishes among different textures. It measures this tactile information with similar precision and sensitivity as human skin, and could vastly improve the ability of robots to perform everything from surgical and industrial procedures to cleaning a kitchen.

(more…)

PaperA new flexible, paper-based supercapacitor could power wearable electronics.

The device uses metallic nanoparticles to coat cellulose fibers in the paper, creating supercapacitor electrodes with high energy and power densities—and the best performance so far in a textile-based supercapacitor.

By implanting conductive and charge storage materials in the paper, the researchers’ layer-by-layer technique creates large surface areas that function as current collectors and nanoparticle reservoirs for the electrodes. Testing shows that devices fabricated with the technique can be folded thousands of times without affecting conductivity.

“This type of flexible energy storage device could provide unique opportunities for connectivity among wearable and internet of things devices,” says Seung Woo Lee, an assistant professor in the Woodruff School of Mechanical Engineering at the Georgia Institute of Technology. “We could support an evolution of the most advanced portable electronics. We also have an opportunity to combine this supercapacitor with energy-harvesting devices that could power biomedical sensors, consumer and military electronics, and similar applications.”

(more…)

The development of prosthetics has changed many lives, providing mobility options and allowing for more active lives. But all artificial limbs aren’t perfect. Some can be painful, difficult to use, and lead to possible skin infections. The Office of Naval Research is looking to change that, providing new options for those in need of artificial limbs.

By teaming up with the Walter Reed National Military Medical Center, the Office of Naval Research has developed a “smart” artificial leg, using sensor technology to monitor walking, alter the way the user wears the prosthetic to aid in comfortability and reduce wear and tear, and warn of potential infection risks. They’re referring to this development as Monitoring Ossolntegrated Prosthesis (MOIP).

“This new class of intelligent prostheses could potentially have a profound impact on warfighters with limb loss,” says Liming Salvino, a program officer in ONR’s Warfighter Performance Department. “MOIP not only can improve quality of life, but also usher in the next generation of prosthetic limbs.”

(more…)

SemiconductorScientists have figured out how to make tiny individual films—each just a few atoms high—and stack them for use in new kinds of electronics.

Over the past half-century, scientists have shaved silicon films down to just a wisp of atoms in pursuit of smaller, faster electronics. For the next set of breakthroughs, though, they’ll need new ways to build even tinier and more powerful devices.

In a study that appears in Nature, researchers describe an innovative method to make stacks of thin, uniform layers of semiconductors just a few atoms thick which could expand capabilities for devices like solar cells and cell phones.

Stacking thin layers of materials offers a range of possibilities for making electronic devices with unique properties. But manufacturing them is a delicate process, with little room for error, researchers say.

“The scale of the problem we’re looking at is, imagine trying to lay down a flat sheet of plastic wrap the size of Chicago without getting any air bubbles in it,” says Jiwoong Park, a professor of chemistry at the University of Chicago and at the Institute for Molecular Engineering and the James Franck Institute. “When the material itself is just atoms thick, every little stray atom is a problem.”

(more…)

A new device that runs on almost zero power can transmit data across distances of up to 2.8 kilometers—breaking a long-held barrier—and could lead to a vast array of interconnected devices.

For example, flexible electronics—such as knee patches that capture range of motion in arthritic patients or patches that use sweat to detect fatigue in athletes and soldiers—hold great promise for collecting medically relevant data.

But today’s flexible electronics and other sensors that can’t employ bulky batteries and need to operate with very low power typically can’t communicate with other devices more than a few feet or meters away. This limits their practical use in applications for medical monitoring, home sensing to smart cities, and precision agriculture.

By contrast, the new long-range backscatter system, which uses reflected radio signals to transmit data at extremely low power and low cost, achieve reliable coverage throughout a 4,800-square-foot house, an office area covering 41 rooms, and a one-acre vegetable farm.

(more…)

DataResearchers have developed a new way to alleviate many of the issues that make magnetic data storage for computer hard disks and other data storage hardware problematic, including speed and energy use.

For almost seventy years now, magnetic tapes and hard disks have been used for data storage in computers. In spite of many new technologies that have arisen in the meantime, the controlled magnetization of a data storage medium remains the first choice for archiving information because of its longevity and low price.

As a means of realizing random access memories (RAMs), however, which are used as the main memory for processing data in computers, magnetic storage technologies have long been considered inadequate. That is mainly due to its low writing speed and relatively high energy consumption.

Pietro Gambardella, professor at the materials department of ETH Zurich, and his colleagues, have now shown that using a novel technique, faster magnetic storage is possible without wasting energy.

(more…)

Chemical engineers have generated ultra-pure green light for the first time.

The new light-emitting diode paves the way for visibly improved color quality in a new generation of ultra-high definition displays for TVs and smartphones.

Electronic devices must first be able to produce ultra-pure red, blue, and green light in order to enable the next generation of displays to show images that are clearer, sharper, richer in detail, and with a more refined range of colors. For the most part, this is already possible for red and blue light; green light, however, has been at the limits of technology.

This is due mainly to human perception, since the eye is able to distinguish between more intermediary green hues than red or blue ones. “This makes the technical production of ultra-pure green very complex, which creates challenges for us when it comes to developing technology and materials,” says Sudhir Kumar of ETH Zurich, co-lead author of the study.

Ultra-pure green plays a key role in extending the color range, or gamut. Ultimately, new hues arise from the technical mixture of three base colors: red, blue, and green. The purer the base colors, the broader the range of hues a screen can display. The new LED is in line with 97 to 99 percent of the international standard for Ultra HD, Rec.2020. By comparison, the purest color TV displays currently available on the market cover on average only 73.11 to 77.72 percent; none exceeds 80 percent.

(more…)

SemiconductorEngineers have created a high-frequency electronic chip potentially capable of transmitting tens of gigabits of data per second, much faster than the fastest internet available today.

Omeed Momeni, an assistant professor of electrical and computer engineering at University of California, Davis, and doctoral student Hossein Jalili designed the chip using a phased array antenna system. Phased array systems funnel the energy from multiple sources into a single beam that can be narrowly steered and directed to a specific location.

“Phased arrays are pretty difficult to create, especially at higher frequencies,” Momeni says. “We are the first to achieve this much bandwidth at this frequency.”

The chip prototyped by Momeni and Jalili successfully operates at 370 GHz with 52 GHz of bandwidth. For comparison, FM radio waves broadcast between 87.5 and 108 MHz; 4G and LTE cellular networks generally function between 800 MHz and 2.6 GHz with up to 20 MHz of bandwidth.

(more…)

LightA new device improves on the sensitivity and versatility of sensors that detect doping in athletics, bomb-making chemicals, or traces of drugs. It could also cut costs.

To conduct these kinds of searches, scientists often shine light on the materials they’re analyzing. This approach is known as spectroscopy, and it involves studying how light interacts with trace amounts of matter.

One of the more effective types of spectroscopy is infrared absorption spectroscopy, which scientists use to sleuth out performance-enhancing drugs in blood samples and tiny particles of explosives in the air.

While infrared absorption spectroscopy has improved greatly in the last 100 years, researchers are still working to improve the technology.

“This new optical device has the potential to improve our abilities to detect all sorts of biological and chemical samples,” says Qiaoqiang Gan, associate professor of electrical engineering in the School of Engineering and Applied Sciences at University at Buffalo. Gan is lead author of the study.

(more…)

  • Page 1 of 11