Nanosensor to Detect Extraterrestrial Life

The EPFL scientists successfully tested their novel system with isolated bacteria, yeast, mouse and human cells.Credit:

The EPFL scientists successfully tested their novel system with isolated bacteria, yeast, mouse and human cells.
Credit: École Polytechnique Fédérale de Lausanne

Could nanotechnology be the key to discovering extraterrestrial life? The scientists at École Polytechnique Fédérale de Lausanne (EPFL) believe so.

A team at EPFL made up of Giovanni Dietler, Sandor Kasa and Giovanni Longo has developed an extremely sensitive nanosensor that can detect organisms as small as bacteria, yeast, and even cancer cells.

The scientits believe that this is a novel innovation that can be applied to the search for extraterrestrial life. Prior to this development, finding life on other plants has been dependent on chemical detection. The researchers have veered away from this idea and have decided to depend on detecting motion, seeing as it is a trait of life.

The nanosensor uses a nano-sized cantilever to detect motion. A cantilever – or simply a beam that is anchored only at one end, with the other end bearing a load – is typically used in the design of bridges and buildings, but this application takes the very same idea and implements it on a micrometer scale.

(more…)

graphene_manchester

The heterostructures is based on 2D atomic crystals for photovoltaic applications.
Image: University of Manchester

Researchers from the University of Manchester in conjunction with the National University of Singapore have discovered an exciting new development with the wonder material graphene.

The researchers have been able to combine graphene with other one-atom thick materials to create the next generation of solar cells and optoelectronic devices.

With this, they have been able to demonstrate how multi-layered heterostructures in a three-dimensional stack can produce an exciting physical phenomenon exploring new electronic devices.

(more…)

How Are Nanomotors Being Built? (Video)

Carbon nanotubes are exceptionally strong, but when you roll two that fit together, the engineers believe they’ve got a nanomotor.Image: Nature

Carbon nanotubes are exceptionally strong, but when you roll two that fit together, the engineers believe they’ve got a nanomotor.
Image: Nature

Ray Kurzweil – an author, computer scientists, inventor, futurist, and director of engineering at Google – has once been quoted saying, “In 25 years, a computer that’s the size fo your phone will be millions of times more powerful but will be the size of a blood cell.”

That prediction may be on its way to fruition with this new discovery from engineers in China and Australia.

The engineers have developed a double-walled carbon nanotube motor, which could be a huge player in future nanotechnology devices.

(more…)

Sensors Meet Sports: The ‘Smart’ Helmet

A UW senior medical engineer explains how the smart helmet can aid to player safety by using sensor technology.Credit: Andy Manis/Journal Sentinel

A UW senior medical engineer explains how the smart helmet can aid in player safety by using sensor technology.
Credit: Andy Manis/Journal Sentinel

Students at the University of Wisconsin-Madison are not just interested in improving technology and creating innovative design, but rather they are determined to make us rethink the way the physical and digital world interact.

These students have spent months in the University’s Internet of Things Lab, where they work to measure, monitor and control the physical world by heightening its interaction with the Internet.

The main innovation that the lab has developed is a football helmet that can detect injuries.

Cross-disciplinary teams of students have come together to develop a high-tech football helmet that has brain wave probes and a device that measures acceleration forces, which gives the ability to detect concussions on the field and directly communicate the information to medical staff.

(more…)

Man Controls Prosthetic Arms with His Mind

While others have been able to control robotic limbs with their mind, the technique is new enough that dual-control has never been tried before.Credit: Johns Hopkins

While others have been able to control robotic limbs with their minds, the technique is new enough that dual-control has never been tried before.
Credit: Johns Hopkins

History was made when the first bilateral shoulder-level amputee was able to wear and simultaneously control two prosthetic limbs. The amazing part? He was able to operate the system by simply thinking about moving his limbs.

The groundbreaking event took place at Johns Hopkins Applied Physics Laboratory, where they’ve been working to develop Modular Prosthetic Limbs as part of the Revolutionizing Prosthetics Program over the past decade.

Les Baugh was the man who made the limbs come to life. Baugh lost both arms in an electrical accident 40 years ago and until now, did not think having two functional, mind-controlled prosthetic limbs was in the realm of possibility.

(more…)

ECS Toyota Young Investigator Fellowship

ecs_toyota

Request for Proposals

The Electrochemical Society with Toyota North America
Announces the ECS Toyota Young Investigator Fellowship
for Projects in Green Energy Technology

Proposal Submission Deadline: January 31, 2015
line_Dividers

ECS, in partnership with the Toyota Research Institute of North America (TRINA), a division of Toyota Motor Engineering & Manufacturing North America, Inc. (TEMA), is requesting proposals from young professors and scholars pursuing innovative electrochemical research in green energy technology.

Global development of industry and technology in the 20th century, increased production of vehicles and the growing population have resulted in massive consumption of fossil fuels. Today, the automotive industry faces three challenges regarding environmental and energy issues: (1) finding a viable alternative energy source as a replacement for oil, (2) reducing CO2 emissions and (3) preventing air pollution. Although the demand for oil alternatives—such as natural gas, electricity and hydrogen—may grow, each alternative energy source has its disadvantages. Currently, oil remains the main source of automotive fuel; however, further research and development of alternative energies may bring change.

(more…)

‘Smart Skin’ Replicates Sense of Touch

A team has developed a skin that can stretch over the entire prosthesis; and its applications aren't just limited to pressure. It's embedded with ultrathin, single crystalline silicone nanoribbon, which enables an array of sensors.Credit: Kim et al./Nature Communications

The skin is embedded with ultrathin, single crystalline silicone nanoribbon, which enables an array of sensors.
Credit: Kim et al./Nature Communications

We’ve talked about the advancements in prosthetic limbs in the past, but now a group of researchers out of Seoul National University are taking innovation in prosthetics one step further with this new “smart skin.”

Researchers from the Republic of Korea have developed a stretchy synthetic skin embedded with sensors, which will be able to help those with prosthetics regain their sense of touch.

This from “Stretchable silicon nanoribbon electronics for skin prosthesis” in the journal Nature Communications:

This collection of stretchable sensors and actuators facilitate highly localized mechanical and thermal skin-like perception in response to external stimuli, thus providing unique opportunities for emerging classes of prostheses and peripheral nervous system interface technologies.

(more…)

Solar Tech to Enable First Underground Park

The Lowline is not just a design project. It’s not just an example of innovative technology. It’s not just an effort to revitalize a community. The Lowline is an example of how science and drive can improve and transform the landscape of modern cities.

If you haven’t yet heard of Lowline, it will essentially be an underground park powered by innovative solar technology located in the 116-year-old abandoned Williamsburg Bridge Trolley Terminal in the Lower East Side of Manhattan.

The technology is designed by James Ramsay of Raad Studio, who looks to overcome subterranean limitations with his underground oasis of plants and trees.

(more…)

Member Spotlight – Chanyuan Liu

Chanyuan Liu

Chanyuan Liu, ECS member and Ph.D. student at the University of Maryland, is the lead author on the nanopore study.
Credit: University of Maryland

The Electrochemical Society’s Chanyuan Liu, along with a team of University of Maryland researchers, believe they have developed a structure that could bring about the ultimate miniaturization of energy storage components.

The tiny structure, known as the nanopore, includes all the components of a battery and can be fully charged in 12 minutes and recharged thousands of times.

This from University of Maryland:

The structure is called a nanopore: a tiny hole in a ceramic sheet that holds electrolyte to carry the electrical charge between nanotube electrodes at either end. The existing device is a test, but the bitsy battery performs well.

(more…)

Why We Need More Women in Science

There is no doubt that women have made their mark in science. From Marie Curie to Rosalind Franklin – women have made outstanding contributions to innovation, research, and technology. Still, there is a significant gender bias that exists in the field, which affects research outcomes and discovery.

The questions exists: Why are there still so few women in science? How will this affect what we learn from research?

According to an article in National Geographic, women make up half the national workforce and earn more college and graduate degrees than men. Still, the gender gap in science exists – specifically in fields such as engineering.

This from National Geographic:

According to U.S. Census Bureau statistics, women in fields commonly referred to as STEM (science, technology, engineering, mathematics) made up 7 percent of that workforce in 1970, a figure that had jumped to 23 percent by 1990. But the rise essentially stopped there. Two decades later, in 2011, women made up 26 percent of the science workforce.

(more…)

  • Page 10 of 11