Cellphones have changed the way the world communicates, but one bar owner is looking to revert to a more classic type of interpersonal communication – if only for one drink.

Looking to give his customers a little encouragement to take their eyes off the electronic screens, bar owner Steven Tyler of East Sussex’s Gin Tub installed metal mesh in the bar’s ceiling and walls. By doing this, all electromagnetic signals are absorbed and redistributed – successfully preventing them from entering the building and preventing patrons from accessing the internet and social media feeds.

This process – known as a Faraday Cage – is derived from Michael Faraday’s 1836 discovery used to prevent interference between electronic equipment in highly charged environments.

Unlike signal jammers, a Faraday Cage is completely legal.

“Unlike jammers, Faraday cages don’t proactively cause interference, although they do interfere with mobile reception,” said a spokesman from Ofcom, the communications regulator in the UK.

While some worry that the Faraday Cage could alienated younger bar-goers, Tyler believes it’s a necessary measure in a world so addicted to digital communication.

“I just wanted people to enjoy a night out in my bar, without being interrupted by their phones,” Tyler told BBC. “So rather than asking them not to use their phones, I stopped the phones working. I want you to enjoy the experience of going out.”

Two researchers from Cornell University recently put forward research describing their development of an aluminum-based electrochemical cell that has the potential to capture carbon emissions while simultaneously generating electricity.

Globally, carbon dioxide is the number one contributor to harmful greenhouse gas emissions. These emissions accelerate climate change, leading to such devastating effects as rising sea levels that can dislocate families and radical local climates that hurt food production levels.

(MORE: Read past meeting abstracts by co-author of the research, Lynden A. Archer, for free.)

While there have been efforts to reduce the amount of carbon pumped into the atmosphere, the current levels are still far too high. Because of this, some researchers – including the duo from Cornell – have turned their attention to capturing carbon.

(more…)

RS2EThe French research network on electrochemical energy storage (RS2E) – a public research organization focused on batteries and supercapacitors – has just launched the Young Energy Storage Scientist Award 2016.

The YESS Award is geared toward young scientists in the energy storage field, focused on awarding research funds to innovative and significant projects in the field of electrochemical energy storage, coupled fields of electrochemical energy storage and conversion, or associated characterization techniques.

With this award, RS2E aims to encourage the next wave of energy storage researchers to be as innovative as possible and to say in private/publish energy storage research. The award aims to aid scientists 35 years old or younger from the U.S., Europe, and Canada.

Two $11,000 awards will be distributed, as well as five $2,700 awards.

Deadline for project submissions is July 27, 2016.

Learn more.

Carbon Dioxide

Image: CC0

With atmospheric greenhouse gas levels at their highest in history, many researchers have been contemplating one question: How can we reutilize carbon dioxide?

One new study reports a new catalyst with the ability to execute highly selective conversion of carbon dioxide into ethylene, producing an important source material for the chemical industry.

The push to convert carbon dioxide into useful chemicals is not a completely novel concept among the scientific community. For this study, researchers opted to make the process more efficient by implementing a new catalyst with higher selectivity to produce more useful chemicals and less unwanted byproducts.

Ruhr-Universitӓt Bochum PhD student and ECS student member, Hemma Mistry, veered away from the traditional catalyst used in this process and instead opted for copper films treated with oxygen or hydrogen plasmas. By doing this, Mistry was able to alter surface properties for optimal performance.

(MORE: Read Mistry’s past ECS Meeting Abstract entitled, “Selectivity Control in the Electroreduction of CO2 over Nanostructured Catalysts.”)

(more…)

Reutilizing carbon dioxide to produce clean burning fuels

Carbon dioxide

David Go has always seen himself as something of a black sheep when it comes to his scientific research approach, and his recent work in developing clean alternative fuels from carbon dioxide is no exception.

In 2015, Go and his research team at the University of Notre Dame were awarded a $50,000 grant to purse innovative electrochemical research in green energy technology through the ECS Toyota Young Investigator Fellowship. With a goal of aiding scientists in advancing alternative energies, the fellowship aims to empower young researchers in creating next-generation vehicles capable of utilizing alternative fuels that can lead to climate change action in transportation.

The road less traveled

While advancing research in electric vehicles and fuel cells tend to be the top research areas in sustainable transportation, Go and his team is opting to go down the road less traveled through a new approach to green chemistry: plasma electrochemistry.

(MORE: Read Go’s Meeting Abstract on this topic, entitled “Electrochemical Reduction of CO2(aq) By Solvated Electrons at a Plasma-Liquid Interface.”)

“Our approach to electrochemistry is completely a-typical,” Go, associate professor at the University of Notre Dame, says. “We use a technique called plasma electrochemistry with the aim of processing carbon dioxide – a pollutant – back into more useful products, such as clean-burning fuels.”

(more…)

Researchers at MIT have developed wireless, wearable toxic-gas sensors made from altered nanotubes with the capacity to detect extremely small amounts of toxic gas and send alerts to your smartphone.

The goal of this technology is to be applied to safety and security devices, such as badges worn by solider to detect the presence of chemical weapons or devices for those who frequently work around hazardous materials.

“Soldiers have all this extra equipment that ends up weighing way too much and they can’t sustain it,” says Timothy Swager, lead author of the paper. “We have something that would weigh less than a credit card. And [soldiers] already have wireless technologies with them, so it’s something that can be readily integrated into a soldier’s uniform that can give them a protective capacity.”

(more…)

The technique of producing hydrogen from water has been discussed by researchers for the better part of the last 40 years, but there has yet to be a breakthrough to make these processes commercially viable.

In an effort to move towards a hydrogen-fuel economy, researchers from KTH Royal Institute of Technology are looking to begin to overcome one of the major hurdles by developing an affordable, stable way to get hydrogen from water.

The main concept behind the study is to move way from traditionally used catalysts made from expensive precious metals toward ones of common materials. The researchers believe that the new development derived from earth-abundant materials could also be used as a catalyst, possible overcoming the cost obstacle.

(more…)

Johna Leddy door plaqueECS Vice President Johna Leddy is an established researcher in electrochemical power sources and a highly respected mentor to the students of the Leddy Lab. Always the educator, Leddy’s most recent side project was creating a door plaque that explains her research to those passing by at the university (see below). The Venn diagram pictured on right is featured (click on it to expand). Leddy explains herself:

The Venn diagram is a map of my research at the current time. Energy and electrocatalysis are at the center and various things evolve from there. Largely, we focus on unusual ways to electrocatalyze reactions that are important in energy generation and storage.

The unusual means of electrocatalysis include: introduction of micromagnets on the electrode to increase rates of electron transfer; use of ultrasound in a thin layer to activate the electrode surface; and modification of electrodes with algae to make ammonia.

At the edges of the Venn diagram are places where these fundamental studies are implemented in energy technologies and voltammetric analysis. The bottom ring is a list of the tools that we use. It all ties together: theory and fundamentals to experiments to devices and back to theory. Experiments inform theory and devices, that lead to questions that generate more experiments.

leddy-plaque

In a push for more basic research funding for electrochemical science, past ECS President Daniel Scherson testified before a U.S. House subcommittee to discuss innovations in solar fuels, electricity storage, and advanced materials.

“I want them to understand where electrochemistry fits in many aspects of our lives,” Scherson, the Frank Hovorka Professor of Chemistry at Case Western Reserve University, said prior to the hearing.

During the hearing, Scherson emphasized to the subcommittee that in order to solve some of society’s most pressing problems, more federal funding to basic electrochemistry research is critical. He further explained that without efforts in electrochemistry, nearly all aspects of energy storage and conversion – including batteries, fuels cells, EVs, and wind and solar energy – would cease to be viable.

“Electrochemistry is a two century old discipline that has reemerged in recent years as a key to achieve sustainability and improve human welfare,” Scherson told the subcommittee.

In recent years, budget cuts in federal spending have adversely affected scientific research. In April of this year, Sen. Jeff Flake (R-Ariz.) launched an attack on federal research dollars in the form of the Wastebook – a report detailing specific studies that the senator believes to be wasteful spending.

(more…)

We’re delving into our archives as part of our continuing Masters Series podcasts. In 1995, ECS and the Chemical Heritage Foundation worked to compile various oral histories of some of the biggest names in electrochemical and solid state science.

One of those key figures was Norman Hackerman, a giant among giants. Hackerman was a world renowned scientist, an outstanding educator, a highly successful administrator, and a champion for basic research. Hear his voice once again as he tells colorful stories of the science, his life, and everything in between.

Listen and download these episodes and others for free through the iTunes Store, SoundCloud, or our RSS Feed. You can also find us on Stitcher.