Sustainable Battery

The new carbon-based material for sodium-ion batteries can be extracted from apples.
Image: KIT

The saying goes: an apple a day keeps the doctor away; but in this case, an apple may be the answer to the next generation of energy storage technology.

ECS member Stefano Passerini of the Karlsruhe Institute of Technology is leading a study to extract carbon-based materials for sodium-ion batteries from organic apple waste.

Developing batteries from waste

This new development could help reduce the costs of future energy storage systems by applying a cheap material with excellent electrochemical properties to the already promising field of sodium-ion batteries.

(MORE: Read more research by Passerini.)

Many researchers are currently looking to sodium-ion batteries as the next generation of energy storage, with the ability to outpace the conventional lithium-ion battery.

The future of sodium-ion batteries

Interest in sodium-ion batteries dates back to the 1980s, but discoveries haven’t taken off until recently. Researchers are now finding way to combat low energy densities and short life cycles through using novel materials such as apples.

(MORE: Read the full paper in ChemElectroChem.)

Sodium-ion batteries could prove to be the next big thing in large scale energy storage due to the high abundance of materials used in development and the relatively low costs involved.

(more…)

Krishnan Rajeshwar

Krishnan Rajeshwar, ECS senior vice president and co-founder of UTA’s Center for Renewable Energy, Science and Technology

New research headed by ECS senior vice president Krishnan Rajeshwar has developed “green fuels” to power cars, home appliances, and even impact critical energy storage devices.

Solar fuels addressing global issues

Rajeshwar’s research works to address critical global and environmental issue by creating an inexpensive way to generate fuel from harmful emissions such as carbon dioxide.

(MORE: Read additional publications by Rajeshwar.)

The University of Texas at Arlington professor and 35 year ECS member has developed a novel high-performing material for cells that harness sunlight to split carbon dioxide and water into usable fuels like methanol and hydrogen gas.

From harmful to helpful

“Technologies that simultaneously permit us to remove greenhouse gases like carbon dioxide while harnessing and storing the energy of sunlight as fuel are at the forefront of current research,” Rajeshwar said. “Our new material could improve the safety, efficiency and cost-effectiveness of solar fuel generation, which is not yet economically viable.”

(MORE: Read the full study as published in ChemElectroChem Europe.)

This from University of Texas at Arlington:

The new hybrid platform uses ultra-long carbon nanotube networks with a homogeneous coating of copper oxide nanocrystals. It demonstrates both the high electrical conductivity of carbon nanotubes and the photocathode qualities of copper oxide, efficiently converting light into the photocurrents needed for the photoelectrochemical reduction process.

(more…)

Microchip Energy

ECS members have found a way to embed a supercapacitor energy storage device in a silicon wafer of a microchip.
Image: Drexel University.

More than half a decade of research has revealed that carbon films can give microchips energy storage capabilities.

An international team, led by ECS members Yury Gogotsi and Patrice Simon, has confirmed their process for making carbon films and micro-supercapacitors that will allow microchips and their power sources to become one and the same.

(MORE: Read additional publications by Gogotsi.)

“This has taken us quite some time, but we set a lofty goal of not just making an energy storage device as small as a microchip—but actually making an energy storage device that is part of the microchip and to do it in a way that is easily integrated into current silicon chip manufacturing processes,” Simon said. “With this achievement, the future is now wide open for chip and personal electronics manufacturers.”

(MORE: Read additional publications by Simon.)

This research proves that the versatile films can be seamlessly integrated into systems that power silicon-based microchips, providing the ability to power items from laptops to smart watches.

“The place where most people will eventually notice the impact of this development is in the size of their personal electronic devices, their smart phones, fitbits89 and watches,” Gogotsi said. “Even more importantly, on-chip energy storage is needed to create the Internet of Things – the network of all kinds of physical objects ranging from vehicles and buildings to our clothes embedded with electronics, sensors, and network connectivity, which enables these objects to collect and exchange data. This work is an important step toward that future.”

This from Drexel University:

The researchers’ method for depositing carbon onto a silicon wafer is consistent with microchip fabrication procedures currently in use, thus easing the challenges of integration of energy storage devices into electronic device architecture. As part of the research, the group showed how it could deposit the carbon films on silicon wafers in a variety of shapes and configurations to create dozens of supercapacitors on a single silicon wafer.

Read the full article.

The carbon films also have the potential to have applications in dynamic seals, gas filtration, and water desalination or purification.

Battery technology for water desalination

Inspired by the principles of the sodium ion battery, Kyle Smith (right) is re-appropriating technology to make huge strides in water desalination.
Image: L. Brian Stauffer

Battery applications range from powering electronic devices to storing energy harvested from renewable sources, but batteries have a range of applications beyond the obvious. Now, researchers from the University of Illinois at Urbana-Champaign are taking existing battery technology and applying it to efforts in water desalination.

The researchers have published the open access article in the Journal of The Electrochemical Society.

“We are developing a device that will use the materials in batteries to take salt out of water with the smallest amount of energy that we can,” said Kyle Smith, ECS member and assistant professor at the University of Illinois at Urbana-Champaign. “One thing I’m excited about is that by publishing this paper, we’re introducing a new type of device to the battery community and to the desalination community.”

Water desalination technologies have flourished as water needs have grown globally. This could be linked to growing populations or drought. However, because of technical hurdles, wide-spread implementation of these technologies has been difficult. However, the new technologies developed could combat that issue by using electricity to draw charged salt ions out of the water.

(more…)

Chennupati Jagadish, distinguished professor at Australian National University

Chennupati Jagadish, distinguished professor at Australian National University

Chennupati Jagadish, long-time member and ECS Fellow, has recently been selected to receive Australia’s highest civilian honor. The Australian National University distingused professor has been named a Companion of the Order of Australia (AC), for his “eminent service to physics and engineering, particularly in the field of nanotechnology, to education as a leading academic, researcher, author and mentor, and through executive roles with national and international scientific advisory institutions.”

(MORE: Read Jagadish’s published research in the ECS Digital Library.)

“I am humbled, honored, and grateful for this honor,” Jagadish, former recipient of the ECS Electronics and Photonics Divison Award, said. “This is a wonderful recognition for 25 plus years of work my research group at the Australian National University in the field of semiconductor optoelectronics and nanotechnology.”

Jagadish’s work takes the form of such novel innovations as lasers for telecommunications, increased efficiency solar cells, and artificial, trainable neurons.

Throughout his scientific career, Jagadish has published more than 620 research papers and five U.S. patents.
“They say that rest is for the weak,” Jangadish said. “I say, ‘Look, I’m having fun.’ Science is fun for me and when you’re having fun you don’t really look at how long you’re working.”

SOFC

New material could help SOFCs operate more efficiently and cheaply.
Image: Bloom Energy

Solid oxide fuel cells may be producing cleaner energy at a more efficient level soon, thanks to a development at the University of Cambridge.

A new thin-film electrolyte material, developed by a team including ECS member Sergei Kalinin, has the potential to propel portable power sources due to its ability to achieve high performance levels and very low temperatures.

Advancing fuel cells

With a huge scientific focus shift toward developing new energy technologies, fuel cells have emerged as a big contender. Transitioning from a simple laboratory curiosity in the 19th century to a main contender for powering electric vehicles, researchers have dedicated much energy to building an efficient, cost effective fuel cell.

(MORE: Read “Battery and Fuel Cell Technology“)

This from University of Cambridge:

By using thin-film electrolyte layers, micro solid oxide fuel cells offer a concentrated energy source, with potential applications in portable power sources for electronic consumer or medical devices, or those that need uninterruptable power supplies such as those used by the military or in recreational vehicles.

(more…)

ECS Member Makes Strides in Battery Safety

IMG_8802_cropped

Image: Penn State

With the newly popular hoverboards bursting into flames, safety in batteries has made its way to the public spotlight. To increase lithium ion battery safety, one ECS member is working to develop batteries with built in sensors to warn users of potential problems.

Chao-Yang Wang, 19-year ECS member, is taking on the challenge of making the highly popular lithium ion battery safer in light of demands for smaller, more energy efficient devices.

“Li-ion batteries essentially provide portable power for everything,” says Wang. “Your cell phone charge can now last for a week instead of a day, but it’s still the same size. The battery has a lot more energy density, you are compressing more and more energy into a smaller space, and you have to be careful when you do that. Our job is to come up with solutions to provide safety while at the same time increasing performance.”

While lithium ion batteries are typically safe under normal conditions, the battery’s flammable electrolyte solution could overheat and catch fire if it is punctured or overcharged.

(more…)

Understanding Corrosion from Nano to Macro

From oil pipeline breaks to leaks in chemical plants, corrosion is one of the most damaging and costly naturally occurring events seen today. In order to better understand and prevent to corrosion process, John Scully, ECS member since and 2016 winner of the Society’s Linford Award, has teamed up with a multidisciplinary team to understand corrosion from the nano to the macroscale.

A new Multidisciplinary University Research Initiative (MURI) has emerged with the mission of preventing corrosion. Sponsored by the Office of Naval Research, the ultimate goal of the project is to understand, predict, and control the role of minor elements on the early stages of corrosion in metal alloys.

At its core, corrosion is the degradation of materials due to electrochemical reactions with the environment. In addition to yielding safety issues, corrosion costs an expected $23 billion annually, according to the Department of Defense.

Not only can corrosion cause buildings and bridges to collapse, but corrosion o electrical outlets and medical implants can cause fires and blood poisoning.

In order to address this complex problems, Scully and others are creating a team comprised of those versed in electrochemistry, microscopy, tomography, and simulations.

Interning with The Electrochemical Society

Amanda Squicciarini, Membership Services intern.

Amanda Squicciarini, Membership Services intern.

My name is Amanda Squicciarini and I have been interning at The Electrochemical Society since this past September with Beth Fisher in Membership Services. I am a junior at The College of New Jersey, located just up the road from ECS’s Pennington, NJ headquarters where I am studying marketing and communications.

You have probably seen a couple of my blog posts, like 2015 ECS Outstanding Student Chapter or 5 Ways to Expand Your Student Chapter (if not, make sure you go check them out!). This was my first experience with Word Press and blogging in general, so it was exciting to see my work published on this blog that has 15,000 page views per month. Blogging was only one of the many learning opportunities I have had at ECS over the past four months. I was also responsible for creating student chapter newsletters, and processing their reimbursements. If you are a student chapter officer, you have probably received quite a few emails from me!

As you probably already know, ECS holds bi-annual meetings every spring and fall in places anywhere from Boston, MA, USA to Cancun, Mexico. During my internship, I was able to observe the behind the scenes hard work and hours of planning that goes into these meetings months before they actually happen. My internship had just begun a few weeks before the fall meeting, and I was able to see how much work needed to be done in order for the meeting to be successful. I felt that this was a special experience to be able to see an event of that magnitude being prepped and planned for (over 2,000 people from 46 different countries attended the 228th ECS Meeting in Phoenix, AZ, USA this fall!). I even got to help by packing registration supplies, creating signs and making sure that the fellows were listed to be given their ribbons. Then after everyone returned from the meeting, I was in charge of organizing the data from the short courses to see if there were any ways to improve them for the next biannual meeting.

This internship was also my first experience in the non-profit sector. It was a great learning opportunity to be able to see how a non-profit functions. In addition, the history being endless within the society really appealed to the history buff in me. A task of mine was to scan in old files (as far back as 1903) so that the historic information is not lost when the papers are eventually recycled. Although this may seem like a very “typical” intern task, this task was essential due to the fact that members of ECS have been changing the world with their research for over 100 years. You may have heard of a guy named Thomas Edison… he was a member of ECS and I would say he changed the world! And hey, it’s pretty neat to be handling papers that are more than five times my age.

Overall, interning with The Electrochemical Society has been a great opportunity and I know I will be using the skills learned during my internship here, throughout my career. Thank you ECS staff and members for making me feel welcome, always being helpful and for teaching me something new on a daily basis. I could not have asked for a better internship experience.

Spring 2015 Internship Opportunity:

If you are seeking an internship opportunity for the spring semester, contact Beth Fisher, Membership Services Director, at beth.fisher@electrochem.org for more information. And no worries if you have not had much experience within the field of electrochemistry, I didn’t either, but you’ll pick it up quick and it is truly a great opportunity.

IIT Student Chapter Holds First Event

Dr. Chamberlain giving a lecture the students and faculty at the IIT student chapter's first event.

Dr. Chamberlain giving a lecture to the students and faculty at the IIT student chapter’s first event.

The Illinois Institute of Technology is one of ECS’s newest student chapters, and they held their first event on November 23, 2015. They received an excellent attendance rate of nearly one hundred students in addition to IIT faculty members and faculty from other near by institutions.  This event included the director of the Argonne Collaborative Center for Energy Storage Science (ACCESS), Dr. Jeffrey Chamberlain, who is also the deputy director of the Joint Center for Energy Storage Research (JCESR). Dr. Chamberlain hosted a lecture that included information and a detailed analysis on the innovation of battery technologies.

Following the lecture, a Q&A session was held, which gave the students and faculty in attendance the opportunity to address questions produced from Dr. Chamberlain’s lecture. These questions included the topics of environmental issues, the life cycle of lithium ion batteries, development of lithium-air batteries and even government policy and funding. The formal lecture and Q&A session was followed with refreshments and continued discussion. The IIT student chapter is extremely grateful to Dr. Chamberlain for taking the time out of his very busy schedule to come and interact with the chapter at their first event.

Congratulations, IIT Student Chapter on a very successful kick-off event!