Charging Electric Cars in Five Minutes

Earlier this year, we looked at the Israeli start-up company StoreDot’s innovative research in battery technology that could allow a smartphone battery to charge in just 30 seconds.

Now, the same company is taking that same technology and applying it to electric vehicles.

The company is claiming to have tweaked their technology to fully charge an electric car in just five minutes.

According to StoreDot, an array of 7,000 cells could enable electric vehicles to travel up to 300 mile on just a five minute charge.

This from Ecomento:

StoreDot believes it can speed up charging by creating a new variant of the industry-standard lithium-ion chemistry. It uses nanotechnology to make new organic materials that researchers claim have lower resistance than the materials used in current lithium-ion cells. That means electricity can flow through the battery more easily.

(more…)

Tiny Particle, Big Results

EJ Taylor, ECS Treasurer and Chief Technical Officer at Faraday Technology, recently ran across this article from The Economist discussing an accidental discovery that could yield big results.

Materials scientists Wang Changan of Tsinghua University and Li Ju of MIT may have unintentionally found the answer to developing a battery that can last up to four times longer than the current generation.

Initially, the scientists were simply researching nanoparticles made of aluminum. While these tiny particles are good conductors of electricity, they become less efficient when exposed to air. When air hits these tiny particles, a coating of an oxide film begins to develop, greatly affecting the performance. The research the two scientists were working on was not to create a better battery, but rather to eliminate the oxide that coats the particles.

This from The Economist:

Their method was to soak the particles in a mixture of sulphuric acid and titanium oxysulphate. This replaces the aluminium oxide with titanium oxide, which is more conductive. However, they accidentally left one batch of particles in the acidic mixture for several hours longer than they meant to. As a result, though shells of titanium dioxide did form on them as expected, acid had time to leak through these shells and dissolve away some of the aluminium within. The consequence was nanoparticles that consisted of a titanium dioxide outer layer surrounding a loose kernel of aluminium.

(more…)

Top 5 Less Recognized Renwable Energy Sources

When we think of renewable energy, our minds typically tend toward solar and wind power. However, there are other promising energy sources that commonly fly under the radar. The Guardian recently highlighted five alternative energy sources that have the potential to see great growth in upcoming years and transform the energy landscape as we know it.

Ocean Power
With ocean waters covering more than 70 percent of our plants surface, it only makes sense to harness the energy it naturally produces. Ocean current and waves could be used to drive electric generators and produce an abundant amount of consistent energy. Typically, ocean energy is broken down into four categories: deep water source cooling, tidal power, wave power, and marine current.

The catch? Salt water causes corrosion, which raises an issue when developing a device to capture this energy. The biggest roadblock engineers are currently facing is how to develop an energy harnessing device that makes ocean power commercially viable. With the right scale of development, this from of energy could be at the forefront of a renewable future.

Biomass
Essentially, biomass transforms living things or the waste they produce into electricity. Currently, biomass accounts for 12 percent of the country’s renewable energy generation. While burning the fuel produces CO2, proponents of this source believe it will significantly reduce greenhouse gas emissions due to the growth of plants that produce the energy, which remove the CO2 from the atmosphere.

(more…)

New Map to Help Understand Climate Change

Thanks to a team of Australian researchers, we can now get a detailed idea of what is happening on the deep ocean floor. The first digital map of the seafloor has been created to let us know what’s happening under 70 percent of the planet’s surface. Not only does this give us a new understanding of the oceanic environment, it will also help scientists see how the waters are reacting to climate change.

“Our new map brings out the enormous ecological and geological complexity of the seafloor that before we had no idea about,” said Dr. Dietmar Muller, a geophysicist at the University of Sydney in Australia and co-author of a paper.

When analyzing the findings, researchers found that the majority of the deep ocean floor is littered with the remains of phytoplankton. Due to the warming ocean temperatures, these phytoplankton have declined by 40 percent since the 1950s. Due to the difficulty in studying organisms on the ocean floor, the reasons for these happenings have only been theoretical. However, it has caused great concern due to the sea creatures’ essential role in providing vital support to the marine ecosystem. Due to the new research, scientists can now examine the composition of the remains and see how the ocean responded to and will continue responding to climate change.

“In order to understand environmental change in the oceans we need to better understand what is preserved in the geological record in the seabed,” says lead researcher Dr. Adriana Dutkiewicz from the University of Sydney.

PS: Head over to the Digital Library to read more on climate change!

Cow Manure Powers 1,000 Homes

A small-town farm in Plymouth, Indiana is doing its part to save the environment. The farm, and many other dairy farms across the country, are investing in biogas recovery systems that take unwanted cow manure and turn it into usable electricity. And not just a tiny bit of electricity. This system can produce enough power to light 1,000 homes.

The farm is grappling an issue that many small farms deal with: too much cow poop. Farms often times toss excess manure into open water to eliminate the small for surrounding neighbors. Doing this leads to a whole host of environmental consequences and negatively impacts the surrounding ecosystem.

In order to get rid of the bothersome manure without causing environmental damage, the farmers set up an anaerobic digester to speed up composition without smell or emission of greenhouse gases.

It’s not just this one farm that it doing its part to help the environment. The Environmental Protection Agency (EPA) estimates that last year alone, farmlands eliminated more than three million tons of greenhouse gases via biogas recovery systems. To put it in perspective, that’s like taking 630,000 pollutant causing cars off the road.

The EPA also estimates that if all viable farms were to install biogas recovery systems, they would generate enough electricity to power over a million homes and drastically cut emissions.

However, the roadblock appears when it comes to finding financing for these projects. Though, the federal government remains committed to seeing progress in this sector.

Nano Chip Gives New Insights into Fuel Cells

specA tiny chip may be the answer to the wide-spread utilization of fuel cells.

A team of researchers from UCLA have developed a nanoelectronic chip that can accurately analyze the chemical reactions that allow fuels cells and batteries to function. The new chip effectively evaluates at the nano level how nanocatalysts convert chemical reactions into electricity.

New Insights About Fuel Cells

Essentially, the chip scales down spectroscopy—doing what a large laboratory would typically do, only more effectively and with the ability to collect new data.

This from UCLA:

Being able to analyze these reactions with increased accuracy, heightened sensitivity and greater cost-effectiveness will vastly improve scientists’ understanding of nanocatalysts, which will enable the development of new environmentally friendly fuel cells that are more efficient, more durable and less expensive to produce. Eventually, those new fuel cells could be used to power vehicles that run on hydrogen, the 10th most abundant element on Earth, and give off water as exhaust.

(more…)

Update: Making Poop Potable (Video)

gates-singalIn early January, we talked about Bill Gates’ initiative to make poop potable. As part of the Bill & Melinda Gates Foundation’s mission to improve sanitation in underdeveloped countries, the business magnate and philanthropist took a sip of water that had been human waste just moments before.

The waste was being filtered through a treatment plant called the OmniProcessor. The plant was designed a part of the Gates Foundation’s Reinvent the Toilet Challenge. Along with being able to make wastewater drinkable, the plant also produce usable electricity.

A Test Run in Africa

Now, the OminProcessor is going from its testing stages to real world application. The plant has taken its first trip to Dakar, Senegal, and while the technology is working, the real world is proving to pose some other challenges.

(more…)

Potatoes are great in many forms: mashed, baked, roasted, electrochemical energy source… Most people have seen or experienced the potato battery experiment in a chemistry class, but BatteryBox is taking this exercise to a whole new level.

As you know, one or two potatoes produce enough energy to power a small digital clock. But how much energy would 110 pound of potatoes produce? Enough to charge a smartphone?


For this experiment, the team at BatteryBox cut up and boiled the potatoes to increase the energy transfer. This allows for the harnessing of the full power of the potato.

Essentially, the team combined the 110 pounds of potatoes to create a galvanic cell.

PS: Check out some more practical applications of electrochemical energy at the 228th ECS Meeting.

printablelii

The batteries have the ability to be integrated into the surface of the objects, making it seem like seem like there is no battery at all.

A new development out of the Ulsan National Institute of Science and Technology (UNIST) has yielded a new technique that could make it possible to print batteries on any surface.

With recent interests in flexible electronics—such as bendable screen displays—researchers globally have been investing research efforts into developing printable functional materials for both electronic and energy applications. With this, many researchers predict the future of the li-ion battery as one with far less size and shape restrictions, having the ability to be printed in its entirety anywhere.

The research team from UNIST, led by ECS member Sang-Young Lee, is setting that prediction on the track to reality. Their new paper published in the journal Nano Letters details the printable li-ion battery that can exist on almost any surface.

(more…)

Light-Driven Reactions Now More Efficient

The new process uses light to do photochemistry instead of the traditional method of using heat to do chemistry.Image: Emory University

The new process uses light to do photochemistry instead of the traditional method of using heat to do chemistry.
Image: Emory University

Scientists from Emory University are opening yet another door to renewable energy efforts. Their new way of performing light-driven reactions based on plasmon—the motion of free electrons that strongly absorb and scatter light—is said to be much more effective than previous processes.

“We’ve discovered a new and unexpected way to use plasmonic metal that holds potential for use in solar energy conversion,” says Tim Lian, professor of physical chemistry at Emory University and the lead author of the research. “We’ve shown that we can harvest the high energy electrons excited by light in plasmon and then use this energy to do chemistry.”

To get a better understanding of surface plasmonic, just think of how a cathedral’s stained glass windows absorb and shatter light.

Researchers involved in this study believe their plasmonic centered process could apply to efforts in electronics and renewable energy. Using plasmon could potentially make light-driven charge transfer for solar energy conversion much more efficient.

(more…)