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Electrochemical Synthesis of 
Ammonia: A Low Pressure,  
Low Temperature Approach*

by Julie N. Renner, Lauren F. Greenlee, 
Andrew M. Herring, and Katherine E. Ayers

A
bout half of the people on this planet exist because of the 
human mastery of nitrogen.1 The earth’s soil and natural 
processes simply could not support seven billion people 
without modern chemistry enabling the production of 
reactive nitrogen compounds from stubbornly inert 

nitrogen gas. All biological processes depend on nitrogen. It is an 
essential component of chlorophyll, proteins, and genetic material. 
For millions of years, plants have relied on natural mineralization, 
nitrogen fixing bacteria, or animal waste as their source of more 
reactive nitrogen in the soil. Over this past century, however, the 
plants we eat have increasingly relied on chemically synthesized 
fertilizers to keep up with demand. In fact, nearly half of the nitrogen 
in our bodies may have originated in a factory2 — where we have bent 
this inert gas to our own human wills. The story of how we came to 
“make bread from air” demonstrates how science and engineering can 
respond to a large societal problem, and impact the entire globe for the 
coming centuries.

In the mid 1800s, mining of fertilizers became more common as 
demand increased. Explorers even went searching for guano deposits, 
large quantities of sun-baked avian excrement full of nitrogen and 
phosphorous. This “white gold” became so important agriculturally 
that it was mentioned in U.S. President Millard Fillmore’s 1850 State 
of the Union Address, and in 1856 the U.S. Congress passed the Guano 

*Contribution of NIST, an agency of the U.S. government; not subject 
to copyright in the United States.

Fig. 1. Historical estimates of world population (source: U.S. Census Bureau), and the exponential population growth occurring shortly after fertilizer mining 
and manufacturing practices began to increase.

Island Act.3 The guano industry eventually fell to more reliable nitrate 
salt deposit mining. By the end of the century, scientists had raised 
the alarm about an impending societal problem — the increasingly 
large demand for nitrogen compounds and the limited supply.4 
Scientists began attempting to fix atmospheric nitrogen, resulting in 
the industrialization of various processes in the early 1900s. In 1909, 
Fritz Haber demonstrated the feasibility of his technique, producing 
ammonia from nitrogen and hydrogen gas at high temperatures 
and pressures over a catalyst. Carl Bosch transformed this bench-
scale demonstration into an unprecedented industrial process as 
an engineer at BASF, resulting in commercial production in 1913.5 
Ultimately known as the Haber-Bosch process, it rose to be the most 
economical way to manufacture fertilizer, and remains so today. This 
process earned both men a Nobel Prize and enabled exponential world 
population growth, shown in Fig. 1.

Today, the Haber-Bosch process involves the heterogeneous 
reaction of nitrogen (N2) obtained from air, and hydrogen (H2) obtained 
from fossil fuels. The process occurs at high pressure (150–300 atm) 
and high temperature (400–500  °C) over an iron-based catalyst. It 
is one of the most impactful developments in human history, but it 
comes at a price. Converting the highly inert N2 to fertilizer is energy 
intensive, and accounts for about ~1% of the world’s annual energy 
consumption.6 In addition, the fossil fuel reforming of natural gas 
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to hydrogen results in substantial carbon dioxide (CO2) emissions. 
According to the U.S. Greenhouse Gas Inventory, total CO2 emissions 
from ammonia production were 10.2 million metric tons of CO2 
equivalents in 2013, accounting for ~3% of the world’s greenhouse 
gas emissions.7 Additional emissions are incurred because of the need 
to transport the ammonia from a large centralized plant. The extreme 
conditions and pre- and post-processing steps combined with the low 
equilibrium conversion (~15%), which requires gas-recycling, makes 
these facilities highly capital intensive. These centralized plants are 
installed at a cost of more than $1 billion per plant, inhibitive for some 
countries that need fertilizer. As fossil fuels dwindle, and concerns 
rise over increasing greenhouse gas emissions, more sustainable and 
economical ammonia production methods will be required to support 
growing world demand for fertilizer.

The Electrochemical  
Production of Ammonia

One alternative approach to solve the ammonia problem is to use 
electricity to drive the ammonia production reaction, decreasing the 
need for high pressure and heat,8-10 and reducing energy demand. The 
concept of using electricity to drive nitrogen reactions and fertilizer 
production is not new. As early as 1901, Bradley and Lovejoy were 
attempting to pass electrical sparks though the air to make nitric acid 
on a commercial scale.11 However, the electricity costs proved to 
be too high and their process was abandoned. Today, methods exist 
to more efficiently utilize the energy input for an electrochemical 
process. Recently, a multi-scale simulation model found that energy 
consumption of an electrolytic process could easily match the Haber-
Bosch process.10 The intrinsic design of electrochemical systems 
allows oxidation and reduction reactions to be separated, enabling a 
wider range of chemistries,12 and potentially more selective catalysts 
that can be used for each reaction. This flexibility in chemistries and 
catalysts may eliminate the need to use highly purified inlet streams, 
allowing air to be the nitrogen source.13,14

A successful electrolytic ammonia process would enable a new 
nitrogen fertilizer industry based on networks of distributed-scale, 
near-point-of-use production plants, as illustrated in Fig. 2. This 
electrically driven process is compatible with intermittent operation 
and enables utilization (and monetization) of renewable electricity 
without the need for transmission capacity expansion. To the extent 
that renewable electricity is utilized to drive the process, CO2 

emissions would be eliminated from the production step, and further 
reduction of emissions would be realized through the reduced need 
for ammonia transport. Since electrochemical technology based 
on flow cells is highly scalable, products could support a range of 
small to mid-sized farms, or could be designed on a larger scale to 
distribute ammonia locally for multiple farms. As megawatt (MW)-
scale electrolysis systems are already becoming a reality at companies 
such as Proton OnSite, localized ammonia production at relevant 
scales is not hard to envision. There is also a natural synergy in using 
distributed wind power for fertilizer production. In the U.S. Plains 
and Upper Midwest, excess wind production capacity, transmission 
limitations, and high regional demand for N-fertilizers combine to 
create excellent economic drivers for this technology. Additionally, 
there are many other industrial uses for ammonia besides agricultural 
fertilizers. Ammonia is used to synthesize a variety of chemicals 
including urea, nitric acid and pharmaceutical compounds. It is also 
important in emissions capture as well as refrigeration, and could be 
used in a fuel cell for electricity generation. This flexibility in use 
makes ammonia an attractive renewable energy storage option.

Despite these potential advantages, only a few major studies 
have been conducted on electrochemical ammonia generation 
devices to date. Some groups are leveraging oxide conductors13,15-17 
for electrochemical production of ammonia, and others are using 
proton conductors. Proton exchange membrane (PEM) materials are 
well established and have been recently incorporated into a number 
of ammonia synthesis devices.18-23 In addition, the Energy and 
Environmental Research Center (EERC) in Grand Forks North Dakota 
has also some highly relevant work in this area, with demonstration 
of large reductions in energy usage by using an integrated acid-based 
electrochemical-thermal ammonia production process that operates at 
a reaction temperature of 200–400 °C.24 Work at elevated temperatures 
(200 °C) has also been conducted using nanoscale Fe2O3 in molten 
hydroxide and basic electrolyte.13,17

While the work to date is incredibly promising for the advancement 
of electrolytic ammonia production, two major problems arise: high 
temperatures and acidic environments. High temperatures make the 
process less practical for consumer use, or rapid intermittent operation 
with renewable energy. In addition, the acidic environments require 
costly materials of construction compared to a basic environment 
and severely limit the options for catalyst materials, potentially 
eliminating many highly active and selective catalysts from the 
design. While PEMs have shown extremely long lifetimes and fast ion 
transport in other electrochemical applications, ammonia is a weak 
base, and it is expected that it will react with acidic membranes to 
reduce proton conductivity18 and, speculatively, membrane lifetime. 
In contrast, using alkaline chemistry reduces the membrane reactivity 

with ammonia, enables low-cost materials of 
construction, and allows the utilization of a wider 
array of low-cost and active catalysts. For these 
reasons, alkaline exchange membranes (AEMs) are 
an attractive alternative to PEMs for electrochemical 
ammonia synthesis.

An Alkaline Exchange 
Membrane-based Ammonia 

Generation Device

State of the art AEMs have ionic conductivities 
comparable to commercially available PEMs; 
even though the hydroxide anion is twice the size 
of a hydrated proton, structure diffusion can be 
extremely fast in these systems.25 In addition, AEM 
materials are generally stiffer and easier to handle 
than PEM materials of similar thickness, allowing 
thinner AEMs and offsetting the lower conductance. 
The use of less raw material also results in less 
costly membranes.

Recently, AEMs have been successfully 
demonstrated in ammonia fuel cells,26-28 but there is 
no significant published work on AEM utilization 

Fig. 2. High regional demand for fertilizers co-located with large renewable resources makes 
electrochemical technology an attractive option for distributed ammonia production. (Images 
courtesy of satit_srihin and supakitmod at FreeDigitalPhotos.net, 2015).
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for ammonia synthesis to date. 
Collaborative work between 
Proton OnSite, Lauren Greenlee 
at the National Institute of 
Standards and Technology 
(NIST), and Andrew Herring 
at Colorado School of Mines 
(CSM) was conducted to show 
ammonia could be produced in 
an AEM-based device. Figure 
3 shows the schematic of the 
electrochemical cell developed. 
The feed gas stream is 
humidified air fed to the cathode, 
where N2 and water (H2O) 
combine with electrons to form 
hydroxide (OH−) and NH3. The 
key enabler in the device is the 
AEM which selectively conducts 
OH− to the anode where the ions 
form O2 and H2O, and enable 
the advantageous basic cell 
environment. The end result is 
an ammonia enriched air stream 
depleted of small amount of N2 and H2O. Catalyst coated gas diffusion 
layers (GDLs) serve as the electrodes for the device, forming a gas 
diffusion electrode (GDE). This electrode approach allows a variety of 
cathode materials to be explored without using high heat to bond the 
electrode to the temperature-sensitive AEM material.

The Need for Selective Catalysts

A primary challenge for the development of AEM-based low-
temperature ammonia technology is the lack of catalyst materials that 
are optimized for both activity and selectivity. The field of catalyst 
development for electrochemical ammonia synthesis is small but 
growing, with ammonia production demonstrated on a variety of 
electrode materials from precious metals such as platinum18 and 
ruthenium9,29 to non-precious metal-based copper, iron, and nickel 
materials.20,30,31 Most recently, Licht and co-authors demonstrated 
significantly higher ammonia production rates and faradaic efficiencies 
in a molten hydroxide electrolyte cell with a nano-Fe2O3 catalyst and at 
slightly elevated temperatures (105 °C–200 °C).13,18 Initial theoretical 
modeling efforts by Howalt, Skúlason and co-authors32,33 (Fig. 4, 
volcano plot representation of theoretical predictions) suggested 
that while ruthenium may be optimal for nitrogen reduction, several 
nonprecious metals such as iron, nickel, and cobalt might be useful 
especially in combination. These predictions certainly support initial 
experimental results cited herein. However, the theoretical modeling 
also points out a key issue: all of the metals examined fall within the 
region where hydrogen atoms will preferentially adsorb over nitrogen 
atoms. In other words, hydrogen evolution from water electrolysis will 
preferentially occur instead of ammonia synthesis. This conclusion 
from theoretical predictions provides a primary explanation for the 
observed low faradaic efficiencies (typically less than 1%, apart from 
results reported by Licht and co-authors); most of the catalytic activity 
of the metal catalyst is going towards hydrogen evolution instead of 
nitrogen reduction.

Licht and co-authors13,17 conducted a series of experiments to 
explain their high efficiency (~35%) and the mechanism for nitrogen 
electroreduction to ammonia in an alkaline electrolyte. In particular, 
they showed that the presence of water, in addition to air or nitrogen 
gas, is necessary to achieve high ammonia production efficiency. The 
group also showed that the ammonia production efficiency is dependent 
on the applied potential that is used for the reaction and can be limited 
by the available surface area of the nanoscale catalyst. These results 
point to a mechanism that is dependent on the hydrogen atoms present 
in water molecules, and the water-splitting reaction, as the hydrogen 
source for nitrogen electroreduction. However, at potentials above the 
theoretical potential for water electrolysis, a portion of the hydrogen 
produced from water electrolysis preferentially forms hydrogen gas 

Fig. 3. Schematic for an AEM-based ammonia production cell.

Fig. 4. A volcano plot predicting metal performance for nitrogen 
electroreduction. Data are plotted for the applied potential (U) required as 
a function of the binding energy (E) of the N atom onto the metal surface. 
Theoretical predictions include multiple associative and dissociative 
mechanisms for N2 reduction and are based on single metal surfaces. The 
optimal metals are shown at the peak of the volcano (dotted yellow line), and 
the region for preferential nitrogen adatom (*N) adsorption is shaded in blue. 
The white region indicates preferential hydrogen adatom (*H) adsorption. 
Adapted from Figure 7 of [33].

instead of reducing nitrogen. As the potential increases, the portion 
of H atoms going to hydrogen gas continues to increase, effectively 
decreasing the ammonia production efficiency.

In terms of a developed technology that can efficiently 
electrochemically produce ammonia with a reasonable physical 
footprint and compete with the Haber-Bosch process, the current 
produced at low applied potentials is too small. Therefore, it 
is necessary for an actual AEM device to operate at potentials 
potentially well above the onset potential of water electrolysis. Herein 
lies the essential challenge in catalyst development for nitrogen 
electroreduction and other similar electrochemical reactions: the 
catalyst must be both selective and active for the target reaction to 
allow for realistic operating conditions. The results reported by Licht 

(continued on next page)
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and co-authors experimentally demonstrate this need where ammonia 
synthesis was limited by available surface area of their catalyst and by 
the lack of selectivity of their catalyst to preferentially reduce nitrogen 
to ammonia instead of evolve hydrogen. The combination of selectivity 
and activity is an opportunity for the field of nanostructured materials, 
where properties such as phase, electronic structure, morphology 
and surface structure can potentially be controlled. It is likely that a 
combination of optimal metals and designed nanostructure will be 
necessary to achieve concurrent selectivity and activity for nitrogen 
electroreduction in a catalyst material. There is evidence elsewhere 
in the field of electrochemical catalysis that nanostructured materials 
result in performance and selectivity enhancements, most notably in 
the large and growing bodies of literature focused on the development 
of low-poisoning, high-activity oxygen reduction reaction catalysts 
and catalysts for methanol electrooxidation.34-48 Lessons learned thus 
far from theory and experiment point towards the potential successful 
use of non-precious metals in multi-metallic nanostructured materials 
for enhanced electrocatalytic performance.

Experimental Progress

To date, the Proton, NIST and CSM team has proven the feasibility 
of an alkaline membrane electrolyzer as an ammonia generator, 
conducted successful nanoparticle synthesis, and has shown improved 
catalyst efficiency for Fe, FeNi and Ni nanoparticles over Pt black 
(Fig. 5).

To enable the screening of promising cathode catalyst materials, 
and prove the AEM-based ammonia generation concept, Proton 
designed and built an AEM system based on a lab-scale, 25 cm2 test 
cell. The screening efforts have revealed Fe only materials to be highly 
active, but unstable. Conservative estimates of initial efficiency are as 
high as 41%. However this efficiency is short lived, and decreases to 
single digit efficiency in a matter of hours. Ni only materials behave 
oppositely. They have demonstrated single digit efficiencies initially, 
with good relative stabilities with time. Interestingly, the Fe-Ni 
materials appear to have a combination of both Fe and Ni properties, 
and differences in performance may be attributable to differences 
in composition. For example, low surface area (LSA) samples have 
degrading efficiency with time (more Fe like), whereas the high 
surface area (HSA) sample have increasing efficiency with time (more 
Ni like). This indicates that a good approach to catalyst optimization 
would include tuning the morphology to get the benefits of the Fe 
efficiency, while protecting it with Ni to gain stability.

The operational performances of the Fe and Ni-based nanocatalysts 
in the AEM system were compared to relevant literature values, and 
the Haber-Bosch process. Table I outlines the results. One important 
highlight of Table I is that the conservative estimate of the initial 
efficiency for Fe only particles (41% efficient) translates to an 
equivalent energy consumption rate to the Haber-Bosch process. It is 
important to note that this high efficiency was also achieved with FeNi 
HSA particles at NIST, in their solution-based 3-electrode tests. These 
results establish proof-of-concept that the AEM technology is capable 
reaching the performance necessary to replace the current Haber-
Bosch process, while operating at low temperatures and pressures and 
without emitting CO2.

While the ammonia production rate is lower than in other 
technologies, the AEM technology stands out as having the most 
potential for efficient ammonia production at low temperatures. 
The low ammonia production rate currently achieved is attributable 
to low current densities. Approaches to increase the current density 
include membrane development toward thinner and more conductive 
materials, as well as catalyst development toward selective and stable 
materials at higher voltages, because reducing the overpotential of the 
reactions ultimately will allow for greater current densities and greater 
selectivity versus hydrogen production.

The Future

A mere century ago, we were faced with a dwindling supply of 
fertilizer, a potential global crisis. Using science and engineering, Fritz 
Haber and Carl Bosch responded to the problem with unimaginable 
success. Similarly today, we face the reality of dwindling fossil 
fuels, and the increased amount of by-products in our atmosphere 
because of their use, a potential global crisis. However, we can take 
heart in the fact that we have a demonstrated capacity to think our 
way out of potential disaster — we have been here before. Surely, 
many innovations will occur in response to this new potential crisis, 
including a new way to make fertilizer.

Several key challenges remain to enable AEM-based electrochemical 
ammonia production technology including: optimizing the catalyst for 
selectivity and activity; optimizing the membrane for OH- transport 
and durability; and achieving higher efficiency with electrochemical 
cell design (e.g., electrode optimization). If successful, this technology 
will transform how our food is grown, how our energy is used, and 
potentially allow greater access to fertilizers globally. If the Haber-
Bosch process makes “bread from air,” the proposed electrochemical 
solution will do so even more truly, potentially using wind energy to 
drive the process, with air that will be cleaner as a result.	             
© The Electrochemical Society. All rights reserved. DOI: 10.1149/2.F04152IF

Fig. 5. FeNi high surface area (HSA), Fe only, and Ni only nanoparticle electrocatalysts and associated ammonia production efficiency results from the AEM 
electrolyzer test cell.

Renner, et al.
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Table I. Cost and efficiency comparisons of AEM electrochemical ammonia production with relevant literature values and the Haber-Bosch process  
(dark grey shading is AEM).

Process Catalyst Energy Consumption  
(kwh/kg NH3)

Ammonia Production Rate  
(mol NH3/cm2s) Faradic Efficiency (%) Cell Potential (V) Temp (°C)

Haber-Bosch49 Typically Fe-based 13.2 N/A N/A N/A 300–500

PEM 
Electrochemical19 Pt 1600–3600 6.20 × 10−10–2.80 × 10−10 0.16–0.36 1.2–1.4 25

Mixed Electrolyte 
Electrochemical14 Perovskite Oxide 130–1140 3.1 × 10−11–1.71 × 10−10 0.5–4.5 1.2–1.4 400

Molten Hydroxide 
Electrochemical13 Fe2O3 16 2.40 × 10−9 35 1.2 200

AEM 
Electrochemical Pt, Fe, Ni, FeNi 14–520 1.33 × 10−12–3.80 × 10−12 1.1–41 1.2 50
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