
The 2011 H. H. Uhlig Summer Research Fellowship — Summary Report Catechol-encapsulated Multi-walled Carbon Nanotube Modified Electrode as a New Generation Electrocatalyst for NADH Oxidation

by Puchakayala Swetha

Since 1984, several attempts have been made to stabilize the biochemical mediator, catechol (CA) as a surface confined electrode and further to utilize it as an electro-catalyst for NADH oxidation¹. Unfortunately, electrode preparation involves tedious synthetic steps and the electrodes are unstable.² In our recent preliminary communication, we have found a new electrochemical preparation for the CA-encapsulated multi-walled carbon nanotube (MWCNT) modified glassy

carbon electrode designated as GCE/CA@ MWCNT³ by potential cycling of GCE/ MWCNT in 1mM of CA dissolved neutral pH. The electrode shows stable and welldefined redox behaviors at an E° values of 0 (A1/C1) and 0.2 V (A2/C2) vs Ag/AgCl, due to the surface confined chemisorbed and diffusion controlled physisorbed CA species respectively (Fig. 1a, curve a).³ In this work we are exploiting the CA@MWCNT modified electrode for NADH oxidation for the first time. As shown in curve b of Fig. 1a, in the presence of 1 mM of NADH, the GCE/CA@ MWCNT shows a profound oxidation signal where the surface confined A1/C1 redox peak appeared. A control experiment with CA unmodified electrode, GCE/MWCNT yielded a 20 times decrease in the NADH current signal along with 200 mV increase in the oxidation potential (i.e., 200 mV of

(continued on next page)

FIG. 1 (a) CV of NADH electrocatalytic oxidation (a = without and b = with 1mM NADH) at GCE/CA@MWCNT and GCE/MWCNT electrodes. (b) Effect of concentration of NADH (0.5mM-3mM) a GCE/CA@MWCNT. (c) Linear calibration plot of NADH concentration (mM) vs current (i_{pa}) at v = 10 mV/s. (d, e) NADH electrocatalysis at GCE/HQ@MWCNT and GCE/Re@MWCNT. (f) Illustration of the CA@MWCNT and its NADH electrocatalysis.

over-potential). A possible mechanism for the electrocatalysis is the electro-generated 1,2 diquione can chemically oxidize NADH to corresponding NAD⁺ which in turn forms CA as reduced redox species. The calibration plot was linear up to 3 mM with a current sensitivity of 11.45 μ A/mM.

We have also tested NADH oxidation on different isomers of CA, hydroquinone (HQ) and Resorcinol (Re) immobilized MWCNTs, i.e., HQ@MWCNT and Re@ MWCNT (which are prepared similar to the CA@MWCNT³). Among the systems, the HQ@MWCNT shows some NADH oxidation current signal, which is relatively weak when compared with CA@MWCNT; while the Re@MWCNT failed to show any electrocatalysis. The absence of electrocatalysis with Re@MWCNT may be due to the formation of a non-conjugated 1,3-diquinone intermediate, which may be less stable and non-reactive, characteristic inside the CNT matrix. In conclusion, the GCE/CA@MWCNT is efficient for electrocatalytic NADH oxidation and extendable for various NADH coupled biosensing systems.

Acknowledgments

Sincere thanks to ECS for the 2011 H. H. Uhlig Summer Fellowship and to Prof. Annamalai Senthil Kumar for his support and guidance.

About the Author

PUCHAKAYALA SWETHA is currently a PhD student of Prof. Annamalai Senthil Kumar at VIT University, India. The author may be reached at swethaspl@gmail.com.

References

- 1. D. C. S. Tse and T. Kuwana, *Anal Chem.*, **50**, 1315 (1978).
- M. A. Ghanem, J. M Chrétien, J. D. Kilburn, and P. N. Bartlett, *Bioelectrochem.*, 76, 115 (2009).
- A. S. Kumar and P. Swetha, *Langmuir*, 26, 6874 (2010).

Benefits of ECS Student Membership

Annual Student Membership Dues Are Only \$18

Student Grants and Awards

Student awards and support for travel available from ECS Divisions

Student Poster Sessions

Present papers and participate in student poster sessions at ECS meetings

ECS Member Article Pack

100 full-text downloads from the Journal of The Electrochemical Society (JES), Electrochemical and Solid-State Letters (ESL), and ECS Transactions (ECST)

Interface - Members Magazine Contains topical issues, news, and events

Discounts on ECS Meetings

Valuable discounts to attend ECS spring and fall meetings

Discounts on *ECS Transactions*, Monographs, and Proceedings Volumes

ECS publications are a valuable resource for students

ECS is an international, educational organization with more than 9,000 scientists and engineers in over 70 countries, engaged in a broad range of technical interests including: Batteries, Corrosion, Dielectric Science & Technology, Electrodeposition, Electronics & Photonics, Energy Technology, Fullerenes, Nanotubes, and Carbon Nanostructures, High Temperature Materials, Industrial Electrochemistry & Electrochemical Engineering, Luminescence & Display Materials, Organic & Biological Electrochemistry, Physical and Analytical Electrochemistry, and Sensors.

The Electrochemical Society 65 South Main Street, Building D, Pennington, New Jersey 08534-2839 USA • Tel 609.737.1902 Fax 609.737.2743