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Modeling Corrosion, Atom by Atom

by Christopher D. Taylor

In the late 20th century, computer programs emerged that could 
solve the fundamental quantum mechanical equations that control 
the interactions of atoms that give rise to bonding. These tools, 

first applied to molecules and bulk solid materials, then began to be 
applied to surfaces and, in the early 21st century, to electrochemical 
environments.1 Commercial and open-source programs are now 
readily available and can be used on both desktop and high-
performance computing platforms to solve for the electronic structure 
of a given configuration of atomic centers (nuclei) and, in so doing, 
provide the basis for determining a whole host of properties, including 
electronic and vibrational spectra, electrical moments such as the 
system dipole, and, most importantly, the energy and forces on the 
atoms.2-4 Other derived properties include the extent to which each 
atom is charged and bond-orders, although to compute these latter 
properties one of a variety of methods for dividing up and quantifying 
the electron density associated with each atom must be selected.5

The physics behind these codes is complex, and, challengingly, 
has no rigorous analytical solution that can be obtained within a finite 
allotment of time. Thus, the computer programs themselves take 
advantage of approximations that allow for a feasible solution but, 
at the same time, constrain the accuracy of the result. Nonetheless, 
solutions can usually be reliably obtained for model systems 
representing materials, interfaces, or molecules that do not exceed 
thousands, and, more realistically, hundreds of atoms.6 Given that 
system sizes of hundreds or thousands of atoms amount to no more 
than the smallest nanoparticle of a substance, the question arises: 
What can atomistic simulations teach us about corrosion?

The answer to this question lies in the ability for atomistic 
simulation to confirm or deny key hypotheses associated with 
potential corrosion mechanisms. By directly simulating the structure 
of a molecule, its spectroscopic signatures, or the energetics of the 
bond-making and bond-breaking processes it engages in, much 
information can be gained that is useful to the interpretation of 

experiment and the verification of proposed theories. For instance, if 
a certain mechanistic step has a considerably large activation barrier 
(as computed from quantum mechanics), we can assume that it will 
not proceed unless somehow catalyzed. Furthermore, if a given 
atomic configuration is found to be metastable through molecular 
simulation, then we can predict that, over time, it will decay to a 
lower energy state. Furthermore, using periodic boundary conditions, 
it is possible to mimic the effects of semi-infinite surfaces (thus 
effectively going beyond the hundreds or thousands of atoms limit), 
albeit ensuring that careful attention is paid to address spurious 
results that may arise from image-image interactions.

In this report we give several examples. In the first case we 
show how the computation of the properties of molecular systems 
can provide some insight as to their overall properties, and draw an 
example from the field of molecular design of corrosion inhibitors. 
In the second, we show how periodic boundary conditions can be 
applied to simulate the chemisorption of environmental species, such 
as chloride, hydroxide and ammonia, on to semi-infinite metallic 
surfaces. Then, we show how this technique can also be applied to 
simulate the structure and properties of the metal/oxide interface. 
Finally, we provide an illustration of how atomistic methods are 
being used to begin to simulate the challenging topic of modeling the 
non-equilibrium states associated with material dissolution.

Designing Corrosion Inhibitors

Quantum chemical evaluation of corrosion inhibitors began with 
Vosta and Eliasek in 1971.7 Since then, the ability to rapidly evaluate 
the molecular structure and electronic properties of relatively small 
inhibitor molecules (dozens of atoms) has led to a proliferation of 
similar studies, at varying levels of sophistication (Fig. 1). At one 

Fig. 1. Two approaches that utilize quantum mechanics to model inhibitor performance. Reproduced with permission from Ind. Eng. Chem. Res. 52 14875-
14889 (2013) (© American Chemical Society, 2013) and J. Am. Chem. Soc. 132 16657-16668 (2010) (© American Chemical Society, 2010).
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extreme, data-driven approaches take the outputs of quantum 
chemical simulations (atomic charges, electronegativity, the energy 
gap between filled and unfilled molecular orbitals) as descriptors 
that are correlated against inhibitor efficiency with machine-learning 
approaches. This approach is called QSAR: quantitative structure 
active relationships.8-15 At the other extreme, direct simulation of the 
inhibitor binding mode to a metal surface has been used to address 
the fundamental mechanisms of inhibition.16-23

The relationship of inhibitor efficiency to the quantum mechanical 
properties of the inhibitor molecule is quite complex. Inhibitor 
molecules typically have a three-part structure, consisting of an 
anchor chemical group (like an amine, thiol, or imidazoline group), a 
backbone (for example, a saturated or unsaturated carbon chain), and 
substituent groups that have been suggested to provide fine-tuning of 
the surface-inhibitor interaction and the inhibitor-inhibitor interactions 
that control the properties of the self-assembled monolayer that forms 
upon inhibitor adsorption.24,25 The interaction of the inhibitor with the 
material itself will depend upon the composition, crystal structure, 
and uniformity of the outermost layers of the material, possibly 
sulfides, oxides or oxy-hydroxides, or, where the passive layers have 
been breached, a bare metal surface itself. Molecular simulation 
makes it possible to begin to deconstruct the various elements of this 
problem, and, as each element becomes tractable with time, they can 
then be reconciled to form an overall multiscale model.

The QSAR approach implicitly combines all of these complex 
micro-processes together and proposes that the inhibitor efficiency, 
like any physical observable, A, should be obtainable (at least in 
principle) by applying the appropriate quantum mechanical operator,  

, to the wavefunction Ψ via the inner-product3

	           〈A〉
+

Ψ
*

Ψ dx =〈Ψ Ψ〉
 		  (1)

The challenge to the QSAR community is that the quantum 
mechanical operator for inhibitor efficiency is not well known, and 
must be dependent upon several factors, such as surface quality, 
pH, temperature, ion-speciation, etc. The premise behind the QSAR 
approach, then, is that given the mystery surrounding the proper 
mathematical form of the operator , it might instead be possible 
to approximate  in terms of the other, more readily computable, 
molecular properties. Hence the use of machine-learning approaches 
to parameterize the inhibitor efficiency in terms of a growing set of 
molecular descriptors that may or may not have any direct relevance 
to the inhibitor mechanism. The key dangers in this approach are 
over-fitting of the black-box numerical model due to the relative 
abundance of quantum chemical descriptors compared to the 
relatively small set of inhibitor efficiency data points, and the likely 
possibility that the quantum chemical descriptors alone may not be 
sufficiently informative for capturing the complexity of the molecule-
surface interaction.

The mechanistic approach, on the other hand, is more time-
consuming, and requires a significant investment of research labor 
and cpu-hours to deconstruct the inhibition mechanism across the 
environment, interfacial, and near-surface domains into its elements 
and then reassemble them into a comprehensive science-based 
model. Pieces of this model, attainable through current molecular 
simulation methods, include the calculation of partition coefficients 
of the inhibitor between oil (or polymer) and aqueous phases,26 the 
effect of the inhibitor molecule on multiphase flow,27 the simulation 
of inhibitor diffusivity and the calculation of pKa’s,28 the adsorption 
of the inhibitor molecule onto various possible surface phases 
and presentations (i.e., exposed Miller indices),19,20,22,29-36 and the 
efficiency with which the inhibitor molecules can form a coherent, 
self-assembled monolayer that adequately protects the surface from 
corrosion.24,37,28 Given that these kinds of simulations are more 
configurationally complex, progress in this area is on-going; more 
time consuming than the QSAR methods, but with potentially higher 
pay-offs in terms of understanding and inhibitor design.

Competitive Adsorption  
and Ammonium Chloride Corrosion

Ammonium chloride salts that form due to the combination of 
ammonia and hydrogen chloride vapors during industrial refining can 
lead to severe corrosion when they absorb water from the atmosphere, 
forming highly saturated salt solutions containing ammonia, 
ammonium cations, and chloride anions as well as water and its 
dissociation products H+ and OH−.39-43 To address some mechanistic 
aspects of the corrosion system that forms due to the uptake of 
water by ammonium chloride salts (i.e., a phenomenon known as 
deliquescence), we used density functional theory to calculate the 
free energy change associated with the adsorption of these ions from 
the aqueous phase to an iron surface (used to mimic the surface of the 
mild steel; it was assumed that, in the worst case, depassivation had 
already occurred).44 For example, the adsorption of chloride leads to 
a free energy change associated with the reaction

	                 Cl−(aq) + *  Cl(ads) + e−		   (2)

where * indicates a vacant adsorption site on the metal surface 
(possibly occupied by water, or one of the other ions present, Fig 2).

On the other hand, it is possible that water can adsorb, with the 
loss of a proton to form a surface adsorbed hydroxide, via the reaction

	              H2O(aq)  OH(ads) + H+ + e− 		   (3)

The free energy consists of the internal energies of the atoms and 
molecules, that are defined by their electronic and nuclear structure, 
the enthalpies and entropies associated with the vibrational modes 
(these are determined by quantum mechanics), configurational 
entropy (which is dependent upon the concentration in solution, and 
the acid-base equilibria), and the pH and electrochemical potential.45

By calculating the free energy of chemisorption from a combination 
of the calculated surface adsorption energies, tabulated data for pKa’s 
and the chlorine/chloride electrochemical potential, it was possible to 
then rank the ions according to their tendency to adsorb on the metal 
surface. Consequently, it was discovered that there exist particular 
regions of pH and potential in which the chloride ion has sufficient 
thermodynamic driving force to interfere with the adsorption of 
oxygen, thus limiting the surface’s ability to protect itself through 
repassivation. The pH-potential regimes identified correlate with the 
boundary conditions observed in the field for ammonium chloride 
corrosion.41,42,46 In this way, atomistic simulation was used to provide 
an explanation for the role of ammonium chloride salts in accelerating 
corrosion of mild steel.

Understanding Passivity  
by Modeling Metal/Metal-Oxide Interfaces

It has been remarked that the self-limiting formation of oxide films 
is a vital condition for the metals-based civilization that humanity 
presently enjoys.47 While oxides and metals are both relatively well 
understood from a crystallographic point of view, the structure of 
the thin films of oxides that passivate metal surfaces is not as well 
defined, and may vary depending on the crystallographic orientation 
of the surface, the electrochemical or atmospheric growth conditions, 
and the presence of impurities and other anion/cations that may be 
present in the environment. Furthermore, the interface provides 
an unusual two-phase state, whereby the symmetries, bonding 
and charge-states of the metallic and oxide phases must achieve a 
compromise that optimizes the Gibbs’ free energy within the given 
kinetic constraints. Atomistic simulations provide a means for 
sampling this potential energy surface as a function of the possible 
geometric arrangements of ions and neutral species that might exist 
at the metal/oxide interface.

The transition from chemisorbed layers to the first few layers of 
oxide on nickel was examined for close-packed and stepped surfaces 
using density functional theory.48 The gradual evolution of the Ni2+ 
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charge state was monitored as a function of the extent of this initial 
oxidation. Differential activities were also observed for step sites 
compared to the terraces. The oxidation of nickel was observed to 
proceed first by a gradual filling of the first monolayer of the surface 
with oxygen, and then by a reconstructed layer that created a mixed 
Ni-O-Ni bilayer. A key mathematical physics challenge still needs to 
be resolved for accurately simulating such two-phase systems, due to 
the very different electron correlation properties of the oxide phase 
versus the metallic phase. Similar studies have been performed on 
Tc(0001) (see Fig. 3), Mg(0001) and Pt(111).49-51

Molecular dynamics simulations based upon the use of 
classical interatomic potentials have been performed for studying 
the passivation of metals including nickel, iron, aluminum, and 
zirconium.52-54 The development of “reactive force fields” has allowed 
a new generation of molecular dynamics simulations to be performed 
that can take into account not only changes in local geometry of 
atoms, but also changes in their oxidation state, which typically lead 
to more drastic changes in the properties of the material.55,56 These 
simulations have been used to examine the mechanisms of oxide 
growth (as mediated by point-defects), and the effects of temperature 
and surface orientation.

Watching Virtual Metal Atoms Dissolve

The process of metal dissolution involves some mystery, due 
to the transition of a neutral metal atom bound to its neighbors 
through metallic bonding across the electrochemical double layer, 
and its emergence as a cationic species with its own solvation shell 
and shed of its excess valence electrons. The unresolved physical 
issues surrounding this phenomenon have in recent years been 
highlighted in a series of papers by Eliezer Gileadi.57-59 Considering 
the quantum and atomistic nature of this process, it is well suited to 
investigation by quantum chemical simulations. However, there are a 
number of hidden complexities to the problem. An effort combining 
molecular dynamics and constrained geometry optimization was 
made to simulate the process by which Cu adatoms dissolve from a 

Fig. 2. Ball and stick representation of the optimized geometries of (a) chloride and (b) ammonia on the Fe(110) surface.

nanoparticle surface facet.60,61 The change in potential energy of the 
dissolving ion, as a function of its progress across the electrochemical 
double layer was shown to be highly dependent on the extent to which 
the coordination sphere of water molecules was allowed to relax. 
This last point was found to be potentially the greatest limitation to 
contemporary simulations of the dissolution process.

A multiphysics approach was made by Pinto et al. who used the 
electron transfer theory of Marcus-Hush to model the deposition of 
a silver atom in its neutral/cation superposition state as it crossed 
the electrochemical double layer.62-64 Using classical molecular 
dynamics the authors showed that the silver cation could in fact retain 
a large portion of its solvation sheath quite close to the electrode. 
Quantum mechanical evaluation of the density of states was used 
to estimate the coupling constant for electron transfer and the 
attachment energy of silver atoms from the terrace to the kink sites 
on the surface. Collectively, the results showed that silver ions have 
a rapid deposition (and, therefore, dissolution) rate due to the ability 
for the solvated ion to approach very close to the electrode surface, 
and the long-range overlap of the silver ion’s s-orbital with the sp-
band of the electrode. For multivalent ions, it was suggested that a 
series of one-electron steps would be required, as the multivalent 
ions possess strong secondary solvation sheaths that would prevent 
as close an approach to the electrode as permitted to the univalent 
silver. Although the focus of the paper was on deposition, the same 
logic applies to the process of dissolution.

Summary Remarks

Atomistic models based upon the fundamental quantum mechanical 
interactions between ions and electrons are currently being used to 
assess the quality of proposed mechanisms in corrosion science, as 
well as providing quantitative insights into the thermodynamic and 
kinetic constraints associated with these mechanisms. Currently, the 
limitations of the methods restrict modeling to systems of “molecular” 
proportions, or, when using periodic boundary conditions, to relatively 
idealized (i.e., high translational symmetry) two-dimensional systems 

(continued on next page)
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such as low-index surfaces. Three-dimensional periodic models have 
been used to model the interaction of impurity elements, such as 
hydrogen, with point-defects.65

To conclude this overview, three categories of atomistic modeling 
for corrosion science are suggested:

•	 Available now: Calculation of molecular and surfaces 
properties for comparison with experiment, such as vibrational 
mode analysis and bond-lengths; prediction of thermodynamic 
properties of stable and metastable phases, such as two-
dimensional surface phases; assessment of kinetic barriers to 
non-electrochemical reactions; limited treatment of the role of 
electrode potential and solvent in affecting reaction kinetics.

•	 Challenging but possible to achieve with current methods: 
Simulation of metal/metal-oxide/oxy-hydroxide interfaces 
through classical and charge-transfer interatomic potentials; 
properties of inhomogeneous alloy systems; treatment of 
dynamic complexity in solvent rearrangement by the metal/
electrolyte interface; the role of point- and line-defects in 
corrosion mechanisms.

•	 Longer standing challenges requiring algorithmic and 
computational advances: Multiphysics and multiscale 
integration of quantum mechanics and classical molecular 
dynamics simulations with coarse-grained and continuum level 
models, including at the process engineering scale; accurate 
treatment of electron transfer and solvent rearrangement effects 
on the kinetics of electrochemical reactions; quantification of 
uncertainty from fundamental physics-based models and its 
propagation across multiscale hierarchies. 	                              

Fig. 3. The oxidation of the close-packed surface of technetium, Tc(0001) at various stages:(a) 0.5 ML of TcO2, (b) 1 ML of TcO2, and (c) 2 ML of TcO2. 
Reproduced with permission from J. Phys. Chem. C. 118 10017-10023 (2014) (© American Chemical Society, 2014).
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