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Waste heat recovery remains an 
inviting subject for research. 
Solid state thermoelectric devices 

have been widely investigated for this 
purpose, but their practical application 
remains challenging due to high cost and 
the inability to fabricate them in geometries 
that are easily compatible with heat sources. 
An alternative to solid-state thermoelectric 
devices are thermogalvanic cells.1-7 The 
temperature difference between the hot 
and the cold electrodes creates a difference 
in electrochemical potential of the redox 
couples at the electrodes. Once connected 
to a load, electrical current and power is 
delivered, converting thermal energy into 
electrical energy. The aim of this summer 
project is to extend ongoing research 
to study the feasibility of incorporating 
thermogalvanic systems into automobiles.

A climate-controlled wind tunnel (Fig. 1) 
was built to provide equivalent conditions 
to the ambient air stream under the car. 
Temperature was controlled using a window 
air conditioner, while an air mover drove 
the flow up to 6 m s−1. A heat gun provided 
the equivalent of a low-temperature exhaust 
gas stream (~110 oC). The annular cell 
was bound by concentric copper pipes 
(electrodes) and CPVC bulkheads; all sealed 
with silicone. K-type thermocouples were 
attached with epoxy onto electrode surfaces 
to measure the electrode temperature, 
which were monitored and recorded by a 
Campbell Scientific CR23X Micrologger. 
The cell potential (E) was probed using a 
Fluke 8846A Digital Multimeter. An Elenco 
RS-500 resistor box (Rext) was connected in 
parallel to measure power output, P = E2/Rext.

A 0.7 M CuSO4 aqueous electrolyte was 
used, with 0.1 M H2SO4 as the supporting 
electrolyte. The Tcold was varied based on 
the quad-monthly average ambient air 
temperature (Tambient) in Phoenix, AZ of 
31.6, 22.5, and 14.1 oC. Because thermal 
resistance from the hot air stream to the 
inner copper pipe is large relative to the 
thermal resistance of the cell, the Thot was 
measured to be less than the hot air stream’s 
temperature. Reducing this resistance would 
greatly improve the system performance. 
The experimental values of Thot and Tcold are 
shown next to their resultant plots in Fig. 2. 
These results showed that higher Tambient 
yielded a higher P, because of the higher 
average cell temperature, Tavg = (Thot+ 
Tcold)/2. This trend agreed with our previous 
study.8 Since the resistor could only be 

Fig 1. 3D CAD drawings of the wind tunnel and the cross-sectional diagram of the annular Cu/Cu2+ 
thermogalvanic cell.

Fig 2. Power density vs. current density curves for the annular Cu/Cu2+ thermogalvanic cell tested at 
the three ambient temperatures of (a) 31.6, (b) 22.5, and (c) 14.1 oC. Thot and Tcold are the temperatures 
of the hot and cold electrodes, respectively, as shown in Fig. 1. The inset shows historical data of 
average ambient air temperature in Greater Phoenix area, AZ from July 1, 2013 to June 30, 2014, 
which is imported from the Arizona State University Weather Station;9 solid and dotted lines indicate 
bi-monthly and quad-monthly average air temperatures, respectively.
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varied down to 1.1 Ω, we could not show 
the maximum power output (Pmax) for Tambient 
values of 31.6 and 22.5 oC. Nevertheless, the 
magnitude of the P and Pmax was consistent 
with our previous observations.1,8

We have demonstrated that the liquid 
electrolyte enables a thermogalvanic device 
to conform to the shape of automotive exhaust 
pipes much more readily than a solid-state 
thermoelectric device. Expensive, cleanroom-
based manufacturing processes are not 
required for constructing the cell, resulting 
in potentially lower production costs than 
high-performance solid-state thermoelectrics. 
Future studies will focus on improving the 
experimental setup by enhancing the air-
side heat transfer, incorporating a flow cell, 
and increasing the electrode surface area 
to increase the sites available for reaction, 
thereby helping generate more power.
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