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It is well known that ohmic measurements are 

carried out at low current density in order to prevent 
heating. Usually, only the Joule heat is considered to be 
important. In contrast to the Joule heat, the Peltier and 
Thomson effects are linear in the current. As was shown 
in [1,2] the Peltier effect which is linear in current results 
in a correction to the resistance measured. Under current 
carrying conditions one of the sample contacts is heated 
and the other is cooled because of Peltier effect. The 
temperature gradient is proportional to the current. The 
Thomson heat is then proportional to square of the current 
and can therefore be neglected. Finally, the voltage swing 
across the circuit includes the thermoelectromotive force 
induced by the Peltier effect, which is linear in current. 
Accordingly, there exists a thermal correction to the 
ohmic resistance of the sample. The correction should be 
in comparison with ohmic resistance of the conductor. 
Above some critical frequency dependent on thermal 
inertial effects the correction disappears. 

We first consider an isotropic (or of cubic 
symmetry) conductor that can be in the thermodynamic 
non-equilibrium with respect to the conducting electrons. 
In general, the current density j and the energy flux 
density q  of the inhomogeneous conductor are given by 

where σ is the conductivity, α is the thermopower, κ is 
the thermal conductivity, φ =ϕ -µ/e is electrochemical 
potential. For the steady state, divj=0, then 

where Q is the total amount of heat evolved per unit time 
and volume of the conductor. The current is accompanied 
by both the Joule and Thomson heats that are proportional 
to the second (first) power of the current respectively. 

We now consider the thermal effects in 
connection with ohmic measurements of the conductor 
resistance. The conductor is connected by means of two 
identical extra leads to the current source. Both contacts 
assumed to be ohmic, α, σ, κ, the length l, and the cross-
section S are different for the leads and the sample. The 
voltage is measured between the open ends (''c'' and ''d'' ) 
kept at the temperature T0 of the external thermal 
reservoir. In general, the contacts (''a'' and ''b'') could be at 
different respective temperatures Ta and Tb. 

It is well known that Peltier heat is generated by 
the current crossing the contact of two different 
conductors. At the contact ( let us say ''a'' ), the 
temperature Ta, the electrochemical potential φ, the 
normal components of the current I=jS, and the total 
energy flux qS are continuous. There exists the difference 
of thermopowers ∆α =α1-α2. For ∆α >0, the charge 
intersecting contact ''a'' gains the energy e∆αTa. 
Consequently, Qa=I∆αTa is the amount of the Peltier heat 
evolved per unit time in contact ''a''. We stress  that Qa can 
be calculated directly through the Thomson term in Eq.(2) 
as Qa=-∫IT∇αdx, where the integration is taken over the 
contact length. In fact, the Peltier effect is equivalent to 
the Thomson effect established at the contact.  

For ∆α >0 and the current flowing initially 
through the contact ''a'' the latter is heated. Then, the 
another sample contact  ''b'' is cooled. The contacts are at 
different temperatures and Ta- Tb =∆T>0. Using Eq. (1), 
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we find the voltage swing U between ends ''c'' and ''d'' as 

where R is the total resistance of the circuit. The first term 
in Eq. (3) corresponds to the Ohm's law. The second term 
coincides with the expression for the conventional 
thermoelectromotive force under zero current 
conditions[3]. We notice that εT= c∫ 

dαdT is a universal 
value because it only depends on the contact temperatures 
for arbitrary cooling conditions. There exists a correlation 
between the thermoelectromotive force and the Peltier 
and Thomson heats. Indeed, the total power evolved in 
the circuit UI is the sum of the Joule heat RI2 and related 
to the thermal effects the power εTI. The product εTI is 
then exactly the sum of the Peltier heat QP =I∆α∆T 
evolved at both contacts and the Thomson heat QT= c∫ 

d
 -

IT∇αdx in the conductor bulk. We conclude that for an 
arbitrary circuit under the same contact temperatures (Ta , 
Tb, and T0) the zero current measurements of the 
thermoelectromotive force allow one to find the total 
amount of both the Peltier and Thomson heats at I → 0. 

We recall that the sample contacts are always 
extra heated (or cooled) because of the Peltier effect. The 
difference of the contact temperatures ∆T is linear in 
current, and therefore, there exists a thermal correction to 
the ohmic resistance ∆R=εT/I=U/I-R. For simplicity, we 
assume σ, α, and κ are temperature independent. The 
thermoelectromotive force is then given by εT =∆α∆T. 
Using Eqs. (2,3), one can find the voltage swing U and, 
thus, the thermal correction ∆R for an arbitrary circuit. 
We emphasize that the real cooling conditions strongly 
influence ∆R. For simplicity,  we consider the adiabatic 
conditions with the sample being thermally isolated from 
the environment, then neglect the heat transfer within the 
leads. We emphasize that under the above conditions, the 
sample is not heated. In fact, at small current Ta ≈Ta ≈T0 
and hence, the amount Peltier heat evolved at contact ''a'' 
is equal to the one absorbed at contact ''b''. Recall ing that 
the energy flux qS is continuous at each contact, from Eq. 
(3) we find the thermal correction to resistivity as  

According to Eq.(4), ∆ρ depends on the reservoir 
temperature and the heat conductivity of the sample. We 
emphasize that the thermal correction is always positive, 
because the total amount of the Peltier heat QP=∆RI2>0. 

We now estimate the magnitude of the thermal 
correction to resistivity in the case where both the 
conductor and leads are metals. At room temperature, the 
electron heat conductivity and thermopower are given by 
κ =LσT and α =π2kζ/2e, where L=(πk/e)2/3 is the Lorentz 
number and ζ =kT/µ is the degeneracy parameter. Hence, 
we find that ∆ρ/ρ∼ζ2<<1. The thermal correction is small 
compared with the ohmic resistance because the electron 
gas is degenerate. In contrast, for semimetals( bismuth, 
µ≈35meV ) or non-degenerated semiconductors( α≈k/e ), 
the thermal correction can be comparable with the ohmic 
resistivity. We stress that ∆ρ is smaller under realistic 
cooling conditions. Moreover, above some critical 
frequency dependent on thermal inertial effects the 
thermal correction disappears. 
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