Chlorine Corrosion of Aluminum Interconnect from Laser Activated Parylene in Acoustic MEMS Arrays

Michael Young, David Horine, Babur Hadimioglu, Scott Elrod, Robert Sprague, Steve Bühler, Beverly Russo, Tannu Sparks, Alexandria Rodkin, Roger Noebeuena, Michael Weisberg and James Mikkelsen

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

Corrosion of electrical interconnect wiring has been shown to cause interconnect failures which led to non-functioning devices. We report here our observation of corrosion of unpassivated Aluminum interconnect lines which were fabricated on glass substrates. These Aluminum lines were part of an integrated two dimensional acoustic MEMS array structure and chip on glass assembly. EDX was used as the primary analysis tool in this work with other complementary surface analysis techniques used to support the primary findings. Parylene, which was used to form an impedance matching coating layer for the integrated acoustic lens array was determined to be the most likely cause of these interconnect corrosion. We have proposed here a likely scenario where Chlorine is activated from Parylene in our fabrication process to cause corrosion. Our approach to suppress these corrosion failures will also be described.

Table 1. Summary table of selective EDX elements for corrosion analysis (signal level: ●: high ; ●: medium ; ○: low ; □: corrosion contributing ; ●: may contribute to corrosion ; ◇: normal ).

References