Laser Annealing for Ultra-shallow Junction Formation in Advanced CMOS

R. Surdeanu^a, Y.V. Ponomarev^a, R. Cerutti^a, B.J. Pawlak^a,
C.J.J. Dachs^a, P.A. Stolk^a, M.A. Verheijen^b, M. Kaiser^b,
M.J.P. Hopstaken^b, J.G.M. van Berkum^b, F. Roozeboom^b,
L.K. Nanver^c, I. Hoflijk^d, R. Lindsay^d

^aPhilips Research Leuven, Kapeldreef 75, B-3001 Leuven, Belgium ^bPhilips Research Laboratories. Eindhoven Prof. Holstlaan 4, 5656 AA, Eindhoven, The Netherlands ^cDIMES, TU Delft Mekelweg 4, 2628 CD Delft, The Netherlands ^dIMEC Kapeldreef 75, B-3001 Leuven, Belgium

Introduction. One of the bottle-necks in scaling down planar MOSFET devices is the formation of highly-activated (low sheet resistance R_{sh}), abrupt, ultra-shallow junctions (USJ) for the source/drain extensions. It has been shown that Sb implants with a subsequent spike anneal is a viable alternative for n+/p junctions for sub-50 nm CMOS generations[1-2]. For p+/n junctions, B remains the best dopant[3], however alternative activation methods have to be found to minimize junction depth (X_j) while maintaining high-level of B activation. In this paper we will demonstrate the benefits of laser annealing for formation of both p+/n (using B) and n+/p (using Sb) USJ, with excellent X_j -R_{sh} trade-off and abruptness values.

Experimental. In this study, antimony was implanted (3e15 cm⁻²@10 keV) into Si (100) substrates without a screen oxide to form n+/p junctions. For the p+/n junctions we investigated three approaches: (*i*) Ge pre-amorphization, followed by B (1e15 @ 0.5keV) implants; (*ii*) GeF₂ + BF₂ (1e15 @ 2.2keV); (*iii*) Ge + B (1e15 @ 0.5keV)+ deep F implant. Laser annealing was performed with a 308 nm wavelength XeCl excimer laser, with a pulse duration of 30 ns. The energy density was varied in the range from 700 to 1100 mJ/cm² [4].

Results and discussion. Fig. 1 shows X-TEM pictures for (a) 1100 mJ/cm^2 and (b) 700 mJ/cm^2 laser anneals. Fig. 1a illustrates that the amorphous layer formed by the heavy Sb implantation was completely melted and subsequently, a mono-crystalline Si layer was re-grown through liquid phase epitaxy (LPE) re-crystallization. In this layer the Sb ions are incorporated and activated well above the solid solubility limit ($\sim 1 \times 10^{20}$ /cm³ at melting temperature), see SRP data in Fig. 2. We obtain a metastable supersaturated junction. The thermal stability of these junctions was also investigated (to be shown in the extended paper) using thermal budgets relevant for the post-processing in a full CMOS flow. Fig. 1b indicates that 700 mJ/cm² is not enough to melt the entire amorphous layer, therefore nucleation centers at the melted interface give rise in the LPE phase to poly-crystalline twin-plane structures. This results in very low carrier mobility in the junction region. This is reflected in Fig. 2 were we show the SIMS (solid lines) and SRP (Spreading Resistance Probing) (dashed lines) profiles for the two extreme cases. The best obtained result is a 26 nm junction with R_{sh}=216 Ohm/sq. at optimum laser anneal conditions of 1100 mJ/cm².

For the p+/n junction we show in Fig. 3 SIMS and SRP results for the samples annealed at the optimum laser energy density, 900 mJ/cm². The use of GeF₂ in combination with BF₂ shows a clear benefit, since it results in reduction of the channeling tail, better activation

of the carriers and very high abruptness. The best junction exhibits X_j =20 nm, R_{sh} =319 Ohm/sq. and a record abruptness of 1.8 nm/decade.

Conclusions. This work demonstrates the great potential of laser annealing to fabricate highly-activated, abrupt, ultra-shallow junctions. Good re-crystallization of the implanted region can be obtained by choosing the appropriate laser energy density. An excellent trade-off between junction depth and sheet resistance is obtained for both n+/p and p+/n junctions.

References

- [1] Y.V. Ponomarev et al., VLSI'01, p.33 (2001)
- [2] K. Shibahara et al., SSDM'01, p.236 (2001)
- [3] B. Yu et al., IEDM'99, p. 509
- [4] L.K. Nanver et al, ECS Proceedings '99; p. 452

Fig. 1. X-TEM of the Sb implanted sample, laser annealed at (a) 1100 mJ/cm^2 laser anneal and (b) 700 mJ/cm^2

Fig. 2. SRP (dashed lines) and SIMS (solid lines) for the Sb implanted sample laser annealed at 700 mJ/cm² and 1100 mJ/cm^2 .

Fig. 3. SRP (dashed lines) and SIMS (solid lines) for the B/BF_2 implanted samples, laser annealed at 900 mJ/cm².