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Introduction. One of the bottle-necks in scaling down 
planar MOSFET devices is the formation of highly-
activated (low sheet resistance Rsh), abrupt, ultra-shallow 
junctions (USJ) for the source/drain extensions. It has 
been shown that Sb implants with a subsequent spike 
anneal is a viable alternative for n+/p junctions for sub-50 
nm CMOS generations[1-2]. For p+/n junctions, B 
remains the best dopant[3], however alternative activation 
methods have to be found to minimize junction depth (X j) 
while maintaining high-level of B activation. In this paper 
we will demonstrate the benefits of laser annealing for 
formation of both p+/n (using B) and n+/p (using Sb) 
USJ, with excellent X j-Rsh trade-off and abruptness 
values. 
Experimental. In this study, antimony was implanted  
(3e15 cm-2@10 keV) into Si (100) substrates without a 
screen oxide to form n+/p junctions. For the p+/n 
junctions we investigated three approaches: (i) Ge pre-
amorphization, followed by B (1e15 @ 0.5keV) implants; 
(ii) GeF2 + BF2 (1e15 @ 2.2keV); (iii) Ge + B (1e15 @ 
0.5keV)+ deep F implant. Laser annealing was performed 
with a 308 nm wavelength XeCl excimer laser, with a 
pulse duration of 30 ns. The energy density was varied in 
the range from 700 to 1100 mJ/cm2 [4].  
Results and discussion. Fig. 1 shows X-TEM pictures for 
(a) 1100 mJ/cm2 and (b) 700 mJ/cm2 laser anneals. Fig. 1a 
ill ustrates that the amorphous layer formed by the heavy 
Sb implantation was completely melted and subsequently, 
a mono-crystall ine Si layer was re-grown through liquid 
phase epitaxy (LPE) re-crystallization. In this layer the Sb 
ions are incorporated and activated well above the solid 
solubili ty limit (~1x1020/cm3 at melting temperature), see 
SRP data in Fig. 2. We obtain a metastable super-
saturated junction. The thermal stabili ty of these junctions 
was also investigated (to be shown in the extended paper) 
using thermal budgets relevant for the post-processing in 
a full CMOS flow. Fig. 1b indicates that 700 mJ/cm2 is 
not enough to melt the entire amorphous layer, therefore 
nucleation centers at the melted interface give rise in the 
LPE phase to poly-crystalli ne twin-plane structures. This 
results in very low carrier mobili ty in the junction region. 
This is reflected in Fig. 2 were we show the SIMS (solid 
lines) and SRP (Spreading Resistance Probing) (dashed 
lines) profiles for the two extreme cases. The best 
obtained result is a 26 nm junction with Rsh=216 Ohm/sq. 
at optimum laser anneal conditions of 1100 mJ/cm2.  

For the p+/n junction we show in Fig. 3 SIMS and 
SRP results for the samples annealed at the optimum laser 
energy density, 900 mJ/cm2. The use of GeF2 in 
combination with BF2 shows a clear benefit, since it 
results in reduction of the channeling tail , better activation 
of the carriers and very high abruptness. The best junction 
exhibits X j=20 nm, Rsh=319 Ohm/sq. and a record 
abruptness of 1.8 nm/decade. 
Conclusions. This work demonstrates the great potential 
of laser annealing to fabricate highly-activated, abrupt, 
ultra-shallow junctions. Good re-crystalli zation of the 
implanted region can be obtained by choosing the 
appropriate laser energy density.  An excellent trade-off 
between junction depth and sheet resistance is obtained 
for both n+/p and p+/n junctions. 
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Fig. 3. SRP (dashed lines) and SIMS (solid lines) for the 
B/BF2 implanted samples, laser annealed at 900 mJ/cm2. 
 
 
 
 

 

 
Fig. 2. SRP (dashed lines) and SIMS (solid lines) for the 
Sb implanted sample laser annealed at 700 mJ/cm2 and 
1100 mJ/cm2. 

 
 

 
 

Fig. 1. X-TEM of the Sb implanted sample, laser annealed 
at (a) 1100 mJ/cm2 laser anneal and (b) 700 mJ/cm2 
 
 
 
 
 
 
 
 
 
 
 


