Lattice Expansion does not explain the T_c in chloroform and bromoform intercalated C_{60} Peter W. Stephens, Ashfia Huq (State University of New York at Stony Brook), R.E. Dinnebier, O. Gunnarsson, H. Brumm, E. Koch, M. Jansen (Max-Planck-Institut für Festkörperfoschung) CHCl₃ and CHBr₃ intercalated C₆₀ have attracted particular interest after superconductivity up to Tc=117K was discovered. We have determined the structure using synchrotron x-ray powder diffraction. The expansion due to intercalation mainly takes place in one dimension, leaving planes of C₆₀molecules on an approximately hexagonal, slightly expanded lattice. Tight binding band structure calculations for the surface layer was performed. In spite of the slight expansion of the layers, the density of states at the Fermi energy is smaller for C_{60} .2CHCl₃ and C_{60} .2CHBr₃ than for C_{60} . This suggests that the expansion alone cannot explain the increase of T_c .