Neutron Diffraction and μSR Study of the Eu₆C₆₀ Ferromagnet
I. Margiolaki, S. Margadonna*,
I. Arvanitidis, K. Papagelis, K. Prassides, K. Ishii**, H. Suematsu**

School of Chemistry, Physics and Environmental Science, University of Sussex, Brighton BN1 9QJ, UK
*Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK
**Department of Physics, University of Tokyo, Tokyo 113-0033, Japan

Exploration of the phase diagram of Eu-C₆₀ has led to the isolation of the single-phase fullerides, Eu₃C₆₀ and Eu₆C₆₀. Of particular interest to is the Eu₆C₆₀ sample, which crystallizes in the cubic space group *Im*3 (isostructural with Ba₆C₆₀) and displays a transition to a ferromagnetic state in the vicinity of 14 K. Magnetic measurements have revealed that all Eu atoms are in the divalent state with a saturation magnetic moment of 7 μ_B (*S*= 7/2). This is consistent with Eu *L*_{III}-edge XANES experiments, while there is evidence that the magnetic interactions are not purely of direct exchange nature, but are modulated through the C₆₀ units.

Here we present a detailed study of its magnetic properties using powder neutron diffraction and zero-field muon spin relaxation measurements.