Development of Gd@C₆₀ Based MRI Contrast Enhancing Agents

Robert D. Bolskar, J. Michael Alford TDA Research, Inc. 12345 West 52nd Avenue Wheat Ridge, CO 80033

Angelo F. Benedetto, Lars O. Husebo, Lon J. Wilson Department of Chemistry Rice University Houston, TX 77005

Recent reports on polyhydroxylated Gd@C82 compounds have demonstrated the principle of using watersolubilized paramagnetic endohedral metallofullerenes as contrast enhancing agents for magnetic resonance imaging (MRI). Unfortunately, given the low abundance of the $M@C_{82}$ materials and the labor-intensive purification involved in generating pure samples, their prospects as pharmaceuticals with significant commercial impact may be limited. However, the potential pharmaceutical applications of the more abundant M@C₆₀ and related molecules have been overlooked until now. While these metallofullerenes are generally insoluble and air-sensitive, their production yields from the carbon arc technique can exceed soluble $M@C_{82}$ species by at least an order of magnitude. We will outline a new separation and derivatization process on $Gd@C_{60}$ and related molecules that allows for their use as MRI contrast enhancing agents. Spectroscopic and magnetic relaxivity characterization (showing relaxivities comparable to currently used Gd chelates) of these new water-soluble and air-stable endohedral metallofullerene materials will be discussed. Preliminary results indicate decreased intramolecular aggregation relative to the polyhydroxylated $M@C_{82}$ materials, important for the development of their medical applications. This first practical usage of $M@C_{60}$ compounds opens the door to increased study and applications development with this important but relatively unexplored class of endohedral metallofullerenes.