
Trannulated Fluorofullerenes: A New Family of Donor-Acceptor Materials

<u>Glenn A. Burley</u>,^{*a*} Anthony G. Avent,^{*a*} Olga V. Boltalina,^{*b*} Federico Pascuale,^{*a*} Joan M. Street^{*c*} and Roger Taylor^{*a*} ^{*a*} School of Chemistry, Physics & Environmental Sciences. Sussex University, Brighton BN1 9QJ UK ^{*b*} Department of Chemistry. Moscow State University. Moscow 119899 Russia

^c Department of Chemistry. Southampton University, Southampton SO17 1BJ UK

In the continuing quest for efficient and long-lived electron transfer processes, [60]fullerene derivatives have shown to be candidates worthy of study.¹ One problem associated with the use of fullerenes as electron acceptor units is its reduced electron affinity upon most types of derivatisation. Fluorination of the fullerene core however *enhances* its electron affinity, therefore overcomes the inadequacy of its all-carbon parent.

Recently, the discovery of the first [18]trannulated fluorofullerene using Bingel addition chemistry to $C_{60}F_{18}$ was reported by our laboratory (Figure).² This reaction provides an efficient synthetic route for the formation of novel photoactive systems containing multiple (from four up to seven) chromophores. This presentation will describe the utilisation of $C_{60}F_{18}$ as a useful synthm for the formation of a new generation of donor-acceptor devices.

Figure: Schlegel diagram of the structure of the [18]trannulene derived from $C_{60}F_{18}$ (R = CO₂Et, X = donor, • = F); the annulene chain is shown as a dotted line.

References

1. H. Imahori, D. Guldi, K. Tamaki, Y. Yoshida, C. Luo, Y. Sakata, S. Fukuzumi, *J. Am. Chem. Soc.*, **2001**, *123*, 6617-6628.

2. X.-W. Wei, A.D. Darwish, O. Boltalina, P.B. Hitchcock, J.M. Street, R. Taylor, *Angew. Chem. Int. Ed.*, **2001**, *40*, 2989-2992.