He Incorporation into a Cage Compound
$C_{14}H_{16}$: A Computational Study

Zdenek Slanina1 and Taihun J. Chou1

1Institute of Chemistry
Academia Sinica, 28 Yen-Chiu-Yuän Rd., Sec. 2
Nankang
Taipei, ROC 11529
Taiwan - R. O. C.

Since it was first reported in 1961, a symmetric cage compound built from 14 sp3 carbon atoms (the summary formula $C_{14}H_{16}$, eight five-membered rings, a D_{2d} symmetry) and its derivatives have been studied in organic chemistry. Recently, Cross, Saunders and Prinzbach reported incorporation of He inside dodecahedrane, He@C$_{20}$H$_{30}$ (Org. Lett. 1 (1999) 1479). This first He containing endohedral species with its cage exclusively built only from sp3 carbon atoms, was prepared by shooting a beam of helium ions at a continuously deposited surface of dodecahedrane.

In this report, computations are carried out on a hypothetical endohedral system He@C$_{14}$H$_{16}$, still smaller than He@C$_{20}$H$_{30}$. The full geometry optimizations have been carried out at several ab initio levels, followed by vibrational analysis in order to confirm that a local energy minimum has been localized. Then, the GIAO NMR computations have been carried out for several selected wavefunctions.