Electron Transfer Dynamics through Nanometer Thick Insulating Barriers on Electrode Surfaces. david waldeck¹ ¹university of pittsburgh chemistry department 219 parkman avenue pittsburgh, pa 15260 usa The studies reported here manipulate the film properties to control the electron transfer kinetics. The composition and structure of Self-Assembled Monolayer (SAM) films plays a critical role on the electron transfer kinetics at electrode surfaces. The studies that will be discussed probe both electronic and electrostatic features of the film on the electron transfer - in particular, the change in electron transfer mechanism, from nonadiabatic to adiabatic, as a function of film thickness is investigated; the dependence of the electron transfer rate constant on the terminal functionality of the SAM is probed; and the importance of film structure on interchain coupling is discussed. These studies illustrate the important role of film properties on electron transfer kinetics.