The Effect of Nano-Sized Metal Deposits on TiO_2 on the Photocatalytic Activity and Mechanism

Wonyong Choi, Eun Young Bae, Jae Sang Lee, and Soonhyun Kim

School of Environmental Science and Engineering Pohang University of Science and Technology Pohang, 790-784, Korea

 TiO_2 photocatalysis has been extensively studied for its environmental applications and demonstrated to be a technically viable clean-up process (1). The main drawbacks of the low quantum yields and the lack of visible-light utilization, however, hinder its widespread acceptance as a practical remediation technology. Various approaches have been attempted to enhance the photocatalytic efficiency of TiO₂, which include metal-ion doping, metallization, and sensitization.

In this study, we investigated and compared the effects of depositing nano-sized metal particles (M: Pt, Au) on TiO₂ in three different aquatic photocatalytic systems: (1) dye-sensitized M/TiO₂ for the visible light photocatalytic degradation of perchlorinated compounds, (2) M/TiO₂ photocatalyst for ammonia removal, and (3) M/TiO₂ photocatalyst for trichloroacetate (TCA) degradation. The Pt and Au particles were photodeposited on TiO₂ (Degussa P25) with a typical loading of ca. 0.2 wt%. The transmission electron microscopic (TEM) images showed that Pt particles with a size range of 1-2 nm were well dispersed on TiO₂ particles (20-30 nm diameter).

Figure 1 exhibits the dramatic effect of the platinization of the sensitized TiO_2 on the visible light-induced dechlorination of CCl_4 . The dechlorination initiates by the conduction band electron transfer to CCl_4 (2).

 $\text{CCl}_4 + e_{cb}^{-}(\text{Pt}) \rightarrow \text{\bullet}\text{CCl}_3 + \text{Cl}^{-}$

The presence of Pt deposits on TiO_2 in this case reduces the fast back electron transfer to the oxidized dye and enhances the interfacial electron transfer to CCl₄. The Pt/TiO2 was also very effective in photocatalytic denitrification of ammonia as shown in Figure 2. While the pure TiO₂ almost quantitatively transformed ammonia into nitrite and nitrate (Fig. 2a), Pt/TiO₂ converted NH₃ into N₂ with reducing the total nitrogen concentration in the suspension (Fig. 2b). The evolution of N_2 gas was confirmed by detecting ${}^{30}N_2$ using GC/MS from ${}^{15}NH_3$ conversion. Au/TiO2 did not exhibit such denitrification effect. The photocatalytic degradation of TCA on Pt/TiO₂ was significantly different from that on pure TiO₂ with showing different product distribution. In the above three photocatalytic systems, both the photocatalytic activity and mechanism changed when Pt was deposited on TiO₂. Although the platinization of TiO₂ has been widely studied, its effect on the photocatalytic mechanism is not well understood. The role of metals and their effect on the photocatalytic reaction system will be discussed.

REFERENCES

1. M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, *Chem. Rev.*, **95**, 69 (1995).

2. Y. Cho, W. Choi, C.-H. Lee, T. Hyeon, H.-I. Lee, *Environ. Sci. Technol.*, **35**, 966 (2001).

Figure 1. Chloride production from CCl_4 degradation on $TiO_2/Ru^{II}L_3$ and $Pt/TiO_2/Ru^{II}L_3$ under visible light illumination. The experimental conditions were: $[TiO_2] = 0.5 \text{ g/L}$, $[Ru^{II}L_3]_i = 10 \text{ }\mu\text{M}$, $[CCl_4]_i = 1 \text{ }m\text{M}$, $pH_i = 3$, and initially N₂-saturated.

Figure 2. Photocatalytic degradation of NH_3 on (a) pure TiO_2 and (b) Pt/TiO_2 under UV irradiation. The experimental conditions were $[NH_3]_0 = 100 \ \mu M$, $[TiO_2] = 0.5 \ g/L$, pH = 10, and air-equilibrated.