Growth of La_{0.8}Sr_{0.2}CrO₃ Thin Films from a Fluoride Sputtering Process

Eric L. Brosha, Rangachary Mukundan, David R. Brown, and Fernando H. Garzon

Los Alamos National Laboratory Electrochemical Materials and Devices Group Los Alamos, New Mexico 87545

ABSTRACT

Dense, thin films of La_{0.8}Sr_{0.2}CrO₃ were prepared on fully stabilized yttria-stabilized zirconia, sapphire, and polycrystalline substrates using 90° off axis magnetron sputtering from a stoichiometric LaF₃/SrF₂/Cr composite target in an Ar atmosphere. Dense, intimately mixed films of $LaF_3/SrF_2/Cr$ were grown at both ambient sputter temperature and at 400°C with the films deposited at higher temperature exhibiting better adhesion to the substrate. Sputtering rates were typically in the range of 1500 to 2000Å/hr. Subsequent anneal at 800°C in a H₂O/Ar atmosphere converted the films to single-phase $La_{0.8}Sr_{0.2}CrO_3$. The room-temperature deposition of LaF,/SrF,/Cr composite, precursor film permitted the patterning of electrodes for hightemperature electrochemical HC/CO gas sensors that operate using a mixed potential response mechanism. Thin films grown on polycrystalline Al₂O₃ were used to obtain fourpoint electronic conductivity measurements.