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We present the first application of phase field model-
ing to electrochemistry. A free energy functional that
includes the electrostatic effect of charged particles
leads to rich interactions between concentration, elec-
trostatic potential, and phase stability. The present
model, explored only for the equilibrium, stationary
interface, properly predicts the charge separation as-
sociated with the equilibrium double layer at the elec-
trochemical interface and its extent in the electrolyte
as a function of electrolyte concentration, as well as
the form expected of electrocapillary curves.

The phase field technique has previously been ap-
plied to the time evolution of complex dendritic, eu-
tectic, and peritectic solidification morphologies. The
present work was motivated by the mathematical anal-
ogy between the governing equations of solidification
dynamics and electroplating dynamics. For example,
the solid-liquid interface is analogous to the electrode-
electrolyte interface. The various overpotentials of
electrochemistry have analogies with the supercoolings
of alloy solidification: diffusional (constitutional), cur-
vature, and interface attachment. Dendrites can form
during solidification and during electroplating. It is
not surprising, however, that we find significant differ-
ences between the two systems.

Electrochemistry has been chosen by the microelec-
tronics industry as the deposition method for “copper
damascene” interconnects on microchips because it is
capable of “superconformal” filling. In physical va-
por deposition on a trench-like surface, material is de-
posited more readily on the flat than within the trench.
This buildup of material will shadow the trench, wors-
ening the condition, and eventually causing the de-
posited material to “pinch oftf”, leaving a void within
the trench. This void has serious consequences for the
current carrying capacity and electromigration resis-
tance of the resulting wire. Chemical vapor deposi-
tion is capable of conformal growth, with a uniform
thickness deposited on all surfaces. This is superior
to the subconformal growth of physical vapor depo-
sition, but still results in a seam where the growth
fronts from the trench sidewalls intersect. This seam
has been found to have deliterious effects on the con-
ductor. In contrast, while electrochemistry is capable
of deposition in both the subconformal and conformal
regimes, with the proper combination of additives, su-
perconformal deposition is also possible. Under these
conditions, material is deposited faster at the bottom

of the trench than on the field and the trench is filled
with void-free, seam-free material. This range of mor-
phological evolution, including the possibility of void
formation, is well suited to study with the phase field
technique.



