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Abstract 

Protons are ubiquitous mediators of energy 
transformation in many systems (1).  In the context of 
electrochemical systems, polymer electrolyte membrane 
(PEM) fuel cells are considered promising autonomic 
energy converters, exhibiting: high efficiencies, low 
pollution levels and technological versatili ty (2).  This 
promising prospect promotes an intense interest in PEMs.  
While the presence of liquid-like water in the nanoporous 
structure of current PEMs promotes high rates of proton 
transfer, it imposes penalties associated with low 
operating temperatures and proper water management in 
the fuel cell (3).  In view of the present restrictions, 
obtaining high proton conductivities with small amounts 
of water, tightly bound to a stable host polymer and, thus, 
restricted in mobili ty, could result in major technological 
breakthroughs (4,5).  Clearly, this requires fundamental 
understanding of both the mechanisms of proton transfer 
and the nature and character of the water in these 
materials.  The present theoretical investigation addresses 
the latter issue, and extends the theoretical work 
previously developed by the authors (6,7). 
 The state of water within the nanopores is, in 
general, different from that of bulk water.  Neutron 
scattering experiments carried out by Lee et al (8) on 
water confined in nanopores of perfluorinated ionomer 
membranes shows that the radial distribution functions 
agree with that of bulk water for only the fully hydrated 
pores.  The precise form that the water adopts under the 
influence of both pore confinement and the electrical field 
due to the anionic groups is still not understood.  From the 
above discussion, it is evident that the thermodynamic 
properties of water in these nanopores will differ from 
that of bulk water.  The problem is rendered more 
diff icult than the more traditional bulk or macroscopic 
calculation because of the following reasons:- 
(1) While the value of N , the number of water 
molecules, is large it is not large enough for its value to 
be taken to be infinity.  The volume of the nanopore 
cannot be set equal to infinity and so the thermodynamic 
limit, often used, cannot be any longer invoked.  This 
limit allows several simplifications that are no longer 
possible to make. 
(2) The topological reduction theorems that can be proved 
and used in the graphical cluster theory for infinite 
number of particles become doubtful for this relatively 
smaller system. 
(3) Because of the presence of the field generated by the 
anionic sites the property of translational invariance is no 
longer tenable and the resulting simplifications cannot be 
employed.  
 Despite the lack of these simplifying features, 
that can normally be exploited, the Ornstein-Zernicke 
(OZ) integral can be exactly derived: 
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Here, h  is the pair correlation function, c is the direct 
correlation function, and 1n  is the one-body distribution 

function. The arguments of the functions and the 
integration variables are shorthand representations of the 
center-of-mass and orientation of each water molecule. 
Once h  has been computed the relevant thermodynamic 
properties can be calculated by using standard formulae 
from statistical thermodynamics. 
 In order to calculate h  the OZ equation must be 
solved.  This is done by iterative methods (9), starting 
with a guessed form in the right hand side, the equation 
solved numericall y to obtain an improved version, which 
then becomes the input for the next step.  The trial 
functions generally contain parameters whose values are 
improved by the calculation.  Such an approach is 
generally used along with the translational invariance and 
involves intensive computer application.  In our case, the 
problem is even more severe due to the reasons 
mentioned above.  We find, however, that the Ornstein-
Zernicke equation can be recast into the form of a 
functional that possesses variational properties with 
respect to the trial functions.  Using a matrix notation to 
represent the OZ equation: 
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We find that a variational solution, vh , for the integral 

equation may be written as: 
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Here, th and τh are trial or guessed functions depending 

upon sets of initially chosen parameters with respect to 

which vh displays stationary properties. 

 In this work we consider the well-known direct 
correlation function derived for hard spheres (9): 
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Here, x  is related to the distance between the two hard 
spheres and the other parameters will be employed as 
variational parameters in order to adapt this function to 
the interior of a charged nanopore. 
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