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Most practical §recn phosphors activated by Tb*
can be sensitized by Ce’*. The green emission of Tb* is
greatly intensified due to efficient energy transfer from
Ce* to Tb>. In most of the cases, 95% of Tb>* emission
arises from the Ce** energy transfer if doping levels are
appropriate. The Ce** to Tb> energy transfer rates can be
as high as 10° to 10'%s™. In this work, we propose a new
approach to produce persistent phosphorescence through
energy transfer from Ce** to other activators.

Rare earth doped alkali-earth aluminates are very
important phosphors for display technology. Doping Tb*
into. alkali-earth aluminate produces 543nm green
emission. Tb>* is found to have a relatively weak
emission with rather long lifetime of ~2.1ms in the
forbidden 4f-4f transition in CaAl,O,. In the Tb>* singly
doped CaAl,O, samples persistent Tb* green emission
was observed but with a short persistence time (about one
hour). Ce** singly doped CaAl,O4 is found to have
persistent phosphorescence in the deep blue at 400nm
with persistence time of up to 10 hours. The Ce** allowed
4£-5d transition is much stronger than the Tb>* 4f-4f
transition and has a very short lifetime of only 13.5ns.

When Tb** and Ce** are codoped into CaAl,04,
the samples show very strong Tb* green afterglow at
543nm with persistence time as long as the blue ce*
afterglow of singly doped samples. From the emission,
excitation, afterglow curves, transition lifetime and
afterglow decay time measurements, (Fig. 1; Fig. 2) it is
found that the energy of the green emission of Tb* is
predominantly from Ce* excitation. The energy transfer
rate from Ce* to Tb** in CaAl,Oy is of the order of 10°
s”'. The long green Tb** afterglow is found to come from
the energy transfer from the persisted Ce** transitions.

In addition, thermoluminescence and
photoconductivity of the Ce** singly doped samples, Tb*
singly doped samples and Ce** and Tb** codoped samples
have been studied. The nature of trapping centers and the
trapping dynamics are discussed.
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Fig. 1 Emission and excitation spectra of (a) ce*
singly doped sample (Ax = 280nm, A, =
400nm); (b) Tb* singly doped sample (A =
280nm, Aepn = 543nm); (c) Tb** and Ce** codoped
sample (Aex = 280nm, Aep = 543nm) of CaAl,O,.
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Fig. 2 Afterglow decay curve of (a) Tb** and
Ce** codoped sample (An=543nm); (b) e
singly doped sample (Am=400nm); (c) Tb™
singly doped sample (Acn=543nm) of CaAl,O,.
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