On the Efficiency of the Photon Cascade Phosphor $SrAl_{12}O_{19}$: Pr^{3+}

J. Grimm, J. Fleniken, U. Happek Department of Physics and Astronomy The University of Georgia Athens, GA 30602-2451

A.A. Setlur, H.A. Comanzo, A.M. Srivastava GE Corporate Research and Development Niskayuna, NY 12309

W.W. Beers GE Lighting Cleveland, OH 44110

Photon cascade processes offer the possibility to manufacture phosphor materials for fluorescence lighting with quantum efficiencies greater than 100%: - a quantum efficiency of 140% has been demonstrated in the GE laboratories for YF_3Pr^{3+} [1]. Pr^{3+} doped $SrAl_{12}O_{19}$ was expected to be another promising photon cascade phosphor, with a theoretical quantum efficiency of about 130 % under UV excitation [2]. Experimentally, however, a significantly lower quantum efficiency was found. We have performed extensive studies of this material to unravel the cause for the apparent luminescence quenching, including photoexcitation and time-resolved emission measurements at temperatures between 10 K and 450 K, as well as thermoluminescence studies to locate the ionization threshold of the Pr^{3+} ion. We find that the low quantum efficiency of SrAl₁₂O₁₉:Pr³⁺ is not caused by thermal quenching, but results from the location of the Pr^{3+} energy levels relative to the host conduction band. Specifically, the Pr^{3+} 5d level is resonant with the host conduction band, which opens up non-radiative relaxation channels. Partial funding by the Department of Energy, DE-FC26-99FT40632, is greatly acknowledged.

References:

[1] W.W. Piper, J.A. DeLuca, and F.S. Ham; J. Lumin. 8 (1974) 344.

[2] A.M. Srivastava and W.W. Beers, J. Lumin. 71 (1997) 285.