LUMINESCENCE OF Ce³⁺ IN THE PEROVSKITES ME(Hf,Zr)O₃ (ME=Ca²⁺, Sr²⁺, or Ba²⁺)

A. A. SETLUR AND A. M. SRIVASTAVA GE CORPORATE RESEARCH AND DEVELOPMENT NISKAYUNA, NEW YORK 12309

U. HAPPEK, J. GRIMM, J. FLENIKEN DEPT. OF PHYSICS AND ASTRONOMY UNIVERSITY OF GEORGIA ATHENS, GA 30602

We will present results on the luminescence of Ce^{3+} in the ME(Hf,Zr)O₃ (ME=Ca²⁺, Sr²⁺, or Ba^{2+}) perovskites, where Ce^{3+} replaces the divalent ion in these materials. Previously, we have presented results where the Ce^{3+} luminescence was quenched at lower temperatures in BaHfO₃ compared to both CaHfO₃ and SrHfO₃. This quenching was initially ascribed to photoionization of the Ce^{3+} ion that is equivalent to an electron transfer between Ce^{3+} and Hf^{4+} and is thermally activated. In this paper, we expand our previous studies by analyzing Ce^{3+} luminescence in the isostructural zirconate perovskites. The effect of switching from hafnate to zirconate hosts and charge compensation on the luminescence of Ce³⁺ will be investigated with respect to the crystal field splitting, centroid position of the $4f \rightarrow 5d$ band, and quenching behavior of these materials. These differences will be correlated with the structural and electronic changes that occur in these host lattices.