RED UV LED PHOSPHORS

A.A. SETLUR and A. M. SRIVASTAVA GE CORPORATE RESEARCH AND DEVELOPMENT NISKAYUNA, NEW YORK 12309

W. W. BEERS GE LIGHTING CLEVELAND, OH 44110

High CRI/high luminosity white light sources generally require a narrow orange-red component centered at ~610-620 nm. It is well established in the lighting industry that $\mathrm{Eu}^{3_{\mathrm{+}}}$ doped phosphors can readily satisfy this requirement. Typically, the position of the $Eu^{3+}-O^{2-}$ charge transfer band (CTB) is at wavelengths <300 nm in oxide host lattices, so there are no strong absorption transitions in typical Eu^{3+} doped oxide phosphors that can be used for UV LED (350-370 nm) excitation. Consequently, it will be necessary to select the appropriate host and dopant ions to sensitize Eu³⁺ luminescence for UV LED applications. We will show that both host lattice absorption as well as transitions localized on a single ion can be used to absorb UV LED radiation after which energy transfer to Eu³⁺ ions leads to orange-red emission. We will discuss the efficiency of these phosphors and the potential implications for UV LED products.