SO₂ ADSORPTION ON RU(100) SURFACES STUDIED BY VIBRATIONAL SPECTROSCOPY

G. Pirug, M. Rongen and H.P. Bonzel

Institut für Schichten und Grenzflächen ISG3 Forschungszentrum Jülich GmbH D 52425 Jülich, Germany

The adsorption of SO₂ on Ru(100) surfaces has been studied in the temperature range between 110 K and 370 K mainly by means of high resolution electron energy loss spectroscopy (HREELS) motivated by its relevance for the solution of environmental problems and its importance for the characterization of electrochemical double layers in H_2SO_4 solutions. The identification of the adsorbed species and the determination of their geometric bonding configuration is accomplished using isotopically labelled $S^{16}O_2$ and $S^{18}O_2$ and applying surface dipole selection rules, respectively. For reference purposes ${}^{16}O_2$, ${}^{18}O_2$ and SO₃ were adsorbed, as well. The Ru(100) surface reacts readily with SO₂ even at 110 K. In addition to molecular SO₂ reaction products such as S, O, SO₃, and SO₄ can be observed in the first adsorbed layer distinguished by their vibrational signature. In addition their bonding configurations can be determined from the observed dipole active modes. Subsequent SO₂ adsorption leads to a condensation of molecular SO₂. Annealing results in the desorption of molecular SO_2 and a further decomposition of the adsorbed species. Thereby the thermal stability of adsorbed SO3 and SO4 is higher compared with chemisorbed SO₂. After annealing to 300 K O-coordinated SO radicals with Cs symmetry can be identified in contrast to S-S chains or complexes of atomic S and O, as proposed on the basis of XPS [1]. Upon further heating to 370 K the SO radicals dissociate into atomic S and O.

1. T. Jirsak, J.A. Rodriguez, S. Chaturvedi and J. Hrbek, Surface Science **418**(1998)8