Spectroscopy of Ni(II) and Pt(II) complexes in carbamide and carbamide-halide melts

N.I.Buryak, T.A.Silinskaya, N.K.Tumanova, and S.V.Volkov

V.I.Vernadskiy Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Pr. Palladina 32/34, Kyiv-142, 03680, Ukraine, Fax: + (03844) 444-30-70, E-mail: vlad@ionc.kar.net

In the present study, the composition and structure of Ni(II) and Pt(II) compounds have been investigated, using electronic absorption spectroscopy and IR spectroscopy, at chemical (C = 0.005 - 0.07 mol/l) and electrochemical ($j = 5 - 50 \text{ mA/cm}^2$) dissolution of these metals in CO(NH₂)₂ and CO(NH₂)₂ - NH₄X (16 mol %), where X = Cl, Br, F.

In the case of chemical and electrochemical (anodic) dissolution of nickel in molten carbamide, electronic absorption spectra (EAS) exhibit bands at 25100 (25200), 15000 (15700) and 12900 (13000) cm⁻¹ respectively, which are characteristic of octahedral chromophores [NiL₆] and correspond to the transitions: ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(P), {}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(F), {}^{3}A_{2g} \rightarrow {}^{1}E_{g}$. In molten carbamide, Ni(II) ions form complexes

In molten carbamide, Ni(II) ions form complexes $[Ni(CO(NH_2)_2)_6]^{2+}$ of O_h symmetry $(10Dq = 9000 \text{ cm}^{-1}, B = 820 \text{ cm}^{-1}, \beta = 0.79)$. In the case of anodic dissolution of metallic nickel in a carbamide melt, isocyanate complexes $[Ni(NCO)_6]^{4-}$ of O_h symmetry $(10Dq = 9900 \text{ cm}^{-1}, B = 740 \text{ cm}^{-1}, \beta = 0.71)$ are formed. The formation of isocyanate complexes has been confirmed by IR spectroscopic data (these are the vibration frequencies of NCO groups in a particular complex: $v_{as}(NCO) = 2200, v_s(NCO) = 1360, \delta = 630 \text{ cm}^{-1}$).

In the case of chemical (anodic) dissolution of nickel(II) in carbamide-halide melts, EAS's exhibit bands at 25000 (24900), 14900 (14900) and 13000 (13100) cm⁻¹. In carbamide-halide melts are formed octahedral carbamide complexes $[Ni(CO(NH_2)_2)_6]^{2+}$ of O_h symmetry with coordination of carbamide molecules through the nitrogen atom.

When $(NH_4)_2[PtCl_4]$ is dissolved in a carbamide melt and in carbamide-halide melts, square-planar complexes $[Pt(NH_3)_4]^{2+}$ of D_{4h} symmetry are formed. In EAS a band with the maximum at 35000 cm⁻¹ has been found, which may be assigned to the transition ${}^1A_{1g} \rightarrow$ ${}^1A_{2g}$. Ammonia complexes of Pt(II) are formed in a carbamide melt according to the scheme:

 $(NH_4)_2[PtCl_4] + 4 CO(NH_2)_2 = [Pt(NH_3)_4]Cl_2 + 2 NH_4Cl + 4 HCNO.$

In the case of anodic dissolution of platinum in a carbamide-fluoride melt, a band at 35000 cm⁻¹ has also been revealed in EAS, which characterizes the formation of ammonia complexes $[Pt(NH_3)_4]^{2+}$ of D_{4h} symmetry.

In the case of anodic dissolution of platinum in carbamide-chloride (bromide) melts, the bands observed in EAS's characterise the formation of platinum complexes [Pt(NH₃)X₃]⁻ of D_{2d} symmetry (where X = Cl, Br) and may be assigned to the transitions: 34000 (33000) cm⁻¹ - ¹A₁ \rightarrow ¹E; 28700 (26900) cm⁻¹ - ¹A₁ \rightarrow ¹A₂; 24000 (23000) cm⁻¹ - ¹A₁ \rightarrow ³A₂; 21000 (-) cm⁻¹ - ¹A₁ \rightarrow ³B₁;

19000 (19000) cm⁻¹ - ${}^{1}A_{1} \rightarrow {}^{3}E$. The spectroscopic parameters of the electronic structure for the complexes [Pt(NH₃)Cl₃]⁻ and $[Pt(NH_3)Br_3]^$ formed are respectively: 10Dq = 31000(29000) cm⁻¹, B = 500 (420) cm⁻¹, $\beta = 0.83$ (0.70). The incorporation of the NH3 ligand into complex leads to a distortion of the squareplanar configuration, which is characteristic of Pt(II) complexes, to D_{2d} symmetry. It is for such $[Pt(NH_3)X_3]^-$ complexes that three faint bands and two much more intense bands are observed, which relate to spin-forbidden and spinallowed transitions respectively.

The regularities found of Ni(II) and Pt(II) complexes formation in ionic-organic molten electrolytes will make it possible to effectively control electrochemical processes in them.

References

1. N.I.Buryak, Y.A.Babenkov, N.K.Tumanova, V.A.Bandur, and S.V.Volkov, State of complex platinum (II) ions in a carbamidechloride-ammonium melt, Ukr. Khim. Journal, vol. 64, $N \ge 2$ (1998), pp. 75-78.

2. N.I.Buryak, T.A.Silinskaya, and S.V.Volkov, Structure of Complex Nickel(II) and Platinum(II) Ions in a Carbamide and Carbamide-Chloride Melts (in Russian), Abstracts of papers preseted at the XIIth Russian Conference on Chemistry Physical and Electrochemistry of Molten and Solid Electrolytes, 17-23 September 2001, Nalchik, Russia, vol. 1, pp. 6-7.

3 N.I.Buryak, S.V.Volkov, and T.A.Silinskaya, Coordination Compounds of Nickel(II) and Platinum(II) in Nonaqueous Media (in Russian), Abstracts of papers presented at the XVth Ukrainian Conference on Inorganic Chemistry with Foreign Kyiv (Ukraine), Participants, 3-7 September 2001, p. 122.

4. S.V.Volkov, K.B.Yatsimirskiy, Spectroscopy of Molten Salts (in Russian), Naukova Dumka, Kyiv (1977), 224p.